Estudo, desenvolvimento e implementação de algoritmos de aprendizagem de máquina, em software e hardware, para detecção de intrusão de rede: uma análise de eficiência energética

CAPES; CNPq === O constante aumento na velocidade da rede, o número de ataques e a necessidade de eficiência energética estão fazendo com que a segurança de rede baseada em software chegue ao seu limite. Um tipo comum de ameaça são os ataques do tipo probing, nos quais um atacante procura vulnerabil...

Full description

Bibliographic Details
Main Author: França, André Luiz Pereira de
Other Authors: Pedroni, Volnei Antonio
Language:Portuguese
Published: Universidade Tecnológica Federal do Paraná 2015
Subjects:
Online Access:http://repositorio.utfpr.edu.br/jspui/handle/1/1166
Description
Summary:CAPES; CNPq === O constante aumento na velocidade da rede, o número de ataques e a necessidade de eficiência energética estão fazendo com que a segurança de rede baseada em software chegue ao seu limite. Um tipo comum de ameaça são os ataques do tipo probing, nos quais um atacante procura vulnerabilidades a partir do envio de pacotes de sondagem a uma máquina-alvo. Este trabalho apresenta o estudo, o desenvolvimento e a implementação de um algoritmo de extração de características dos pacotes da rede em hardware e de três classificadores de aprendizagem de máquina (Árvore de Decisão, Naive Bayes e k-vizinhos mais próximos), em software e hardware, para a detecção de ataques do tipo probing. O trabalho apresenta, ainda resultados detalhados de acurácia de classificação, taxa de transferência e consumo de energia para cada implementação. === The increasing network speeds, number of attacks, and need for energy efficiency are pushing software-based network security to its limits. A common kind of threat is probing attacks, in which an attacker tries to find vulnerabilities by sending a series of probe packets to a target machine. This work presents the study, development, and implementation of a network packets feature extraction algorithm in hardware and three machine learning classifiers (Decision Tree, Naive Bayes, and k-nearest neighbors), in software and hardware, for the detection of probing attacks. The work also presents detailed results of classification accuracy, throughput, and energy consumption for each implementation.