Summary: | The principal objective of an image retrieval system is to obtain images which are as similar
as possible to the user´s requirements, from all the images in the reference collection. Such an
objective is difficult to reach due principally to the subjectivity of the image similarities. This
is due to the fact the images can be interpreted in different ways by different people. With the
aim of resolving this problem the content-based image retrieval systems explore the features of
color, shape and texture. These are nearly always associated to the regions and use relevance
feedback mechanisms to adjust a search to the user s criterions. Various approaches have been
used in relevance feedback from those genetic algorithms have become quite popular due to their
adaptive abilities. In this work we presented an image retrieval system based on the similarity
of local patterns, working with the features of color, shape and texture as well as relevance
feedback via a genetic algorithm. The task of this algorithm is infer weights to the features of
color, shape, texture and regions which better adjust to the similarity found between images
through the user s search criterions, thus producing a final ranking which is in accordance with
the criterions expressed in the relevance feedback. The genetic algorithms theory states that
the fitness measure applies an essential role upon the performance of these algorithms, once
the fitness measure directs the search path for the evaluation of each individuals aptitude. Due
to the lack of consensus about the best fitness measure in the ranking evaluation problem we
present a performance analysis of ten fitness functions. The fitness functions are classified in
two groups: order-based and non-order based. Some of these functions are adapted from textbased
information retrieval systems and others are proposed in this work. The experimental
results show that the order based fitness functions are more compatible to the user s interests,
once they present superior rankings in terms of precision for low recall rates and conduct the
quickest genetic algorithm in the search for an optimal heuristic solution. The results obtained
are superior to those of the works of Stejic et al., which served as our inspiration. === O principal objetivo de um sistema de recuperação de imagens é obter imagens que são o
mais similar possível à requisição do usuário, de todas as imagens de uma coleção de referência.
Tal objetivo é difícil de ser alcançado devido principalmente à subjetividade do conceito de
similaridade entre imagens, visto que uma mesma imagem poder ser interpretada de diferentes
maneiras por diferentes pessoas. Na tentativa de resolver este problema os sistemas de recuperação de imagens por conteúdo exploram as características de cor, forma e textura, quase
sempre associadas à regiões e usam de mecanismos de realimentação de relevantes para ajustar
uma busca aos critérios do usuário. Várias abordagens têm sido usadas em realimentação de
relevância entre as quais os algoritmos genéticos têm se tornado bastante populares devido às
suas habilidades adaptativas. Neste trabalho apresentamos um sistema de recuperação de imagens
com base na similaridade de padrões locais, empregando as características de cor, forma
e textura e com realimentação de relevância via algoritmo genético. A tarefa do algoritmo
genético é inferir pesos para as características de cor, forma, textura e regiões que melhor ajustam
a medida de similaridade entre imagens aos critérios de busca do usuário, fazendo com
que o ranking final esteja de acordo com os critérios expressos na realimentação. Da teoria dos
algoritmos genéticos é conhecido que a medida de aptidão exerce um papel essencial na performance
destes algoritmos, uma vez que ela direciona o caminho da busca, por avaliar a aptidão
dos indivíduos. Devido à falta de consenso acerca da medida de aptidão ideal na avaliação
de rankings apresentamos uma análise de performance de dez medidas de aptidão. As funções
de aptidão são classificadas em dois grupos: baseadas em ordem e não baseadas em ordem.
Algumas destas funções são adaptadas do contexto de sistemas de recuperação de informação
e outras são propostas neste trabalho. Os resultados experimentais mostram que as funções de
aptidão baseadas em ordem são mais compatíveis aos interesses dos usuários uma vez que elas
apresentam rankings superiores em precisão para baixos níveis de revocação e, conduzem mais
rapidamente o AG na busca por uma solução heurísticamente ótima. Os resultados obtidos são
superiores aos dos trabalhos de Stejic et al. que nos serviram de inspiração. === Mestre em Ciência da Computação
|