Construções geométricas por dobradura (ORIGAMI): aplicações ao ensino básico

A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta...

Full description

Bibliographic Details
Main Author: Luiz Claudio de Sousa Passaroni
Other Authors: Francisco Roberto Pinto Mattos
Format: Others
Language:Portuguese
Published: Universidade do Estado do Rio de Janeiro 2015
Subjects:
Online Access:http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9184
Description
Summary:A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras. === This work aims to demonstrate the Origami art in a mathematical context, with a brief summary of the historical aspects and its development over time, giving more prominence to applications in mathematics, with the use of the axioms of Huzita and proposal to expand this set of axioms to include the circle in Origami paper. As the use of folding techniques, this work shows various applications of Origami in mathematics, such as the solution of some classical problems; the construction of polygons; the demonstration of the sum of the interior angles of a triangle; the calculation of some areas and the solution of some problems of maximum and minimum, followed by mathematical concepts involved in each of them. The inclusion of the circle in Origami plan allowed also to study the constructions of conic by folding.