Summary: | Este trabalho tem como objetivo apresentar soluções de sistemas não-lineares com raízes múltiplas, através de um algoritmo híbrido. Para esta finalidade foi desenvolvido
e implementado um algoritmo de busca aleatória baseado no método proposto por Luus e Jaakola (1973) como etapa de busca aleatória dos pontos iniciais, que são refinados
através do algoritmo de Hooke e Jeeves. O diferencial deste trabalho foi propor um algoritmo híbrido, utilizando as características dos algoritmos Luus-Jaakola e Hooke e
Jeeves como etapas de busca e refinamento respectivamente. Para isso, os algoritmos acima são encapsulados em funções no algoritmo híbrido. Além destas duas etapas, o algoritmo híbrido possui duas outras características importantes, que é a execução repetida até que se alcance um número suficiente de soluções distintas, que são então submetidas a um processo de classificação de soluções por intervalo, onde cada intervalo gera um conjunto de soluções próximas, que por sua vez, são submetidas à etapa final de minimização, resultando em apenas um valor de solução por classe. Desta forma cada classe produz uma única solução, que faz parte do conjunto final de soluções do problema, pois este algoritmo é aplicado a problemas com múltiplas soluções. Então, o algoritmo híbrido desenvolvido foi testado, tendo como padrão, vários problemas clássicos de programação não-linear, em especial os problemas irrestritos com múltiplas soluções. Após os testes, os resultados foram comparados com o algoritmo Luus-Jaakola, e o Método de Newton Intervalar / Bisseção Generalizada (IN/GB - Interval Newton/Generalized Bisection), com a finalidade de se obter uma
análise quantitativa e qualitativa de seu desempenho. Por fim comprovou-se que o algortimo Híbrido obteve resultados superiores quando comparados com os demais. === This paper aims to present solutions for nonlinear systems with multiple roots, using a hybrid algorithm. For this purpose was developed and implemented an algorithm based on random search method proposed by Luus and Jaakola (1973) as a step in search of random starting points, which will be refined through the algorithm of Hooke and Jeeves. The differential of this work is to propose a hybrid algorithm, using the characteristics of the Luus-Jaakola algorithm and Hooke and Jeeves as a search and refinement stages respectively. For this, the above algorithms are encapsulated in functions in the hybrid algorithm. Besides these two steps, the hybrid algorithm has two other important characteristics, which is the execution repeated until to reach a sufficient number of distinct solutions, which is then undergo a process of classification of solutions by
interval, where each interval generates a set solutions to close, which in turn is subject to the final stage of minimization, resulting in only one value per class of solution. Thus each class provides a unique solution, which is part of the final set of solutions of the problem, because this algorithm is applied to problems with multiple solutions. So, the hybrid algorithm developed was tested, with the standard, several problems of classical non-linear programming, in particular the unrestricted problems with multiple solutions. After the tests, the results were compared with algorithm Luus-Jaakola, and the Interval
Newton/Generalized Bisection method (IN/GB), in order to obtain a quantitative and qualitative analysis of their performance. Finally it was found that the hybrid algortimo achieved higher when compared to the others.
|