Summary: | A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes Finitos para a solução numérica desta equação. No modelo do Método de Elementos Finitos utilizou-se polinômios cúbicos de Hermite como funções de interpolação. No modelo de Volumes Finitos foi utilizada uma discretização de ordem superior para a avaliação das derivadas da equação em estudo. Em ambos os métodos, os modelos desenvolvidos consideram a utilização de diferentes tipos de condições de contorno para a solução do problema. Foram analisadas as influências de parâmetros da equação, das condições de contorno e do refinamento da malha na solução numérica. Os resultados apresentam a análise de erros da solução numérica através da comparação desta com a solução analítica.
|