Análise numérica do problema de difusão anômala unidimensional

A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes...

Full description

Bibliographic Details
Main Author: Gisele Moraes Marinho
Other Authors: Joaquim Teixeira de Assis
Format: Others
Language:Portuguese
Published: Universidade do Estado do Rio de Janeiro 2014
Subjects:
Online Access:http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=7487
Description
Summary:A presente dissertação tem como objetivo analisar o comportamento da solução numérica da equação de difusão anômala com distribuição de fluxo bimodal, no regime estacionário, através de dois métodos numéricos. Foram desenvolvidos modelos utilizando o Método de Elementos Finitos e o Método de Volumes Finitos para a solução numérica desta equação. No modelo do Método de Elementos Finitos utilizou-se polinômios cúbicos de Hermite como funções de interpolação. No modelo de Volumes Finitos foi utilizada uma discretização de ordem superior para a avaliação das derivadas da equação em estudo. Em ambos os métodos, os modelos desenvolvidos consideram a utilização de diferentes tipos de condições de contorno para a solução do problema. Foram analisadas as influências de parâmetros da equação, das condições de contorno e do refinamento da malha na solução numérica. Os resultados apresentam a análise de erros da solução numérica através da comparação desta com a solução analítica.