O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd, Tb)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === SOUSA, Vinícius da Silva Ramos de. O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd e Tb). 2008. 99f. Dissertação (Mestrado em Física) - Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio...
Summary: | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === SOUSA, Vinícius da Silva Ramos de. O efeito magnetocalórico anisotrópico nos compostos RAl2 (R = Dy, Er, Ho, Nd e Tb). 2008. 99f. Dissertação (Mestrado em Física) - Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2008.
O efeito magnetocalórico é a base da refrigeração magnética. O potencial magnetocalórico é caracterizado por duas quantidades termodinâmicas: a variação isotérmica da entropia (ΔSiso) e a variação adiabática da temperatura (ΔTad), as quais são calculadas sob uma variação na intensidade do campo magnético aplicado ao sistema. Em sistemas magnéticos que apresentam uma anisotropia magnética é observada uma mudança no efeito magnetocalórico, isto porque este potencial torna-se fortemente dependente da direção de aplicação do campo magnético. A anisotropia em sistemas magnéticos pode levar a um efeito magnetocalórico inverso, assim como à definição de um efeito magnetocalórico anisotrópico, o qual por definição é calculado para um campo cuja intensidade é mantida constante e cuja orientação variamos de uma direção difícil de magnetização para a direção fácil de magnetização. O efeito magnetocalórico anisotrópico foi estudado para os compostos intermetálicos de terras raras do tipo RAl2 considerando-se um modelo microscópico que leva em conta as interações de troca (na aproximação de campo médio), de Zeeman e a interação de campo elétrico cristalino, que é a responsável pela anisotropia nos compostos RAl2. O efeito magnetocalórico anisotrópico foi investigado para a série RAl2 e comparado com o efeito magnetocalórico usual.
=== The magnetic refrigeration is based on the magnetocaloric effect. The magnetocaloric
potential is characterized by the two thermodynamics quantities: the isothermal entropy change (ΔSiso) and the adiabatic temperature change (ΔTad), which are calculated upon a change in the intensity of the applied magnetic field. In anisotropic magnetic systems it is observed a change in the magnetocaloric effect, since this potential becomes strongly dependent on the direction in which the external magnetic field is applied. The anisotropy in such magnetic systems can lead to an inverse magnetocaloric effect, as well as to the definition of an anisotropic magnetocaloric effect, that by definition is calculated upon a magnetic field which intensity is kept fixed and which orientation is changed from a hard direction of magnetization to the easy direction of magnetization. This anisotropic magnetocaloric effect was performed for the RAl2 intermetallic compounds considering a microscopic model Hamiltonian that includes the Zeeman interaction, the exchange interaction (taken in the mean field approximation) and the crystalline electrical field, that is responsible for the anisotropy in the RAl2 compounds. The anisotropic magnetocaloric was fully investigated for the serie RAl2 and compared with the usual magnetocaloric effect and several curves of (ΔSiso) and (ΔTad) were obtained.
|
---|