Geometria enumerativa via invariantes de Gromov-Witten e mapas estÃveis

CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior === Neste trabalho apresento a teoria de Gromov-Witten, cohomologia quÃntica e mapas estÃveis e uso estas ferramentas para obter alguns resultados enumerativos. Em particular, provo a fÃrmula de Kontsevich para curvas racionais projetivas p...

Full description

Bibliographic Details
Main Author: Renan da Silva Santos
Other Authors: Josà Alberto Duarte Maia
Format: Others
Language:Portuguese
Published: Universidade Federal do Cearà 2015
Subjects:
Online Access:http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14326
Description
Summary:CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior === Neste trabalho apresento a teoria de Gromov-Witten, cohomologia quÃntica e mapas estÃveis e uso estas ferramentas para obter alguns resultados enumerativos. Em particular, provo a fÃrmula de Kontsevich para curvas racionais projetivas planas de grau d. FaÃo um estudo introdutÃrio dos espaÃos de Mumford-Knudsen e construo os espaÃos de Kontsevich a fim de definir os invariantes de Gromov-Witten. Estes sÃo usados para definir o anel de cohomologia quÃntica. Em seguida, aplico a teoria geral para o caso do plano projetivo e, usando a associatividade do produto quÃntico, obtenho a fÃrmula de Kontsevich. TambÃm estudo a fronteira do espaÃo modulli de mapas estÃveis e descrevo o grupo de Picard destes. Com isso, seguindo as ideias de Pandharipand, especialmente o algoritmo por este desenvolvido, calculo alguns nÃmeros caracterÃsticos de curvas no espaÃo projetivo. === In this work, I present the Gromov-Witten theory, quantum cohomology and stable maps and use these tools to obtain some enumerative results. In particular, I proof the Kontsevich formula to projective rational plane curves of degree d. I do an introductory study of Mumford-Knudsen spaces and construct the Kontsevich spaces in order to define gromov-witten invariants. These are used to define the quantum cohomology ring. Next, I apply the general theory to the case of the projective plane and, using the the associativity of the quantum product, I obtain the Kontsevich formula. I also study the boundary of the modulli space of stable maps and describe its Picard group. Following the ideas of Pandharipand, especially the algorithm he developed, I calculate some characteristic numbers of curves in the projective space.