GestÃo de risco setorial no mercado de aÃÃes brasileiro
nÃo hà === Este trabalho analisa durante o perÃodo de 01/2008 a 12/2011 o risco de mercado de seis Ãndices setoriais da Bolsa de Valores de SÃo Paulo (BM&FBovespa): o Ãndice imobiliÃrio (IMOB), o Ãndice de energia elÃtrica (IEE), o Ãndice de consumo (ICON), o Ãndice do setor industrial (INDX), o...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal do CearÃ
2013
|
Subjects: | |
Online Access: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11506 |
id |
ndltd-IBICT-oai-www.teses.ufc.br-7874 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-www.teses.ufc.br-78742019-01-21T23:01:28Z GestÃo de risco setorial no mercado de aÃÃes brasileiro Industry risk management in the Brazilian stock market Fernanda Salles de Oliveira Pessoa Paulo RogÃrio Faustino Matos Emerson LuÃs Lemos Marinho Marcelo de Castro Callado Ãndices Setoriais Value-at-Risk DistribuiÃÃo Normal Volatilidade Condicional GARCH Backtesting GrÃficos de Balzer Sectorial Indexes Value at Risk Normal Distribution Conditional Volatility GARCH Backtesting BalzerÂs Graphics CIENCIAS SOCIAIS APLICADAS nÃo hà Este trabalho analisa durante o perÃodo de 01/2008 a 12/2011 o risco de mercado de seis Ãndices setoriais da Bolsa de Valores de SÃo Paulo (BM&FBovespa): o Ãndice imobiliÃrio (IMOB), o Ãndice de energia elÃtrica (IEE), o Ãndice de consumo (ICON), o Ãndice do setor industrial (INDX), o Ãndice financeiro (IFNC) e o Ãndice setorial de telecomunicaÃÃes (ITEL). AtravÃs da mÃtrica Value-at-Risk (VaR) estimam-se quatro modelos. Dois desses modelos sÃo ditos incondicionais no que se refere à variÃncia: o VaR Gaussiano Incondicional, admitindo que os retornos seguem uma distribuiÃÃo normal, e o VaR Best Fitting Incondicional, construÃdo a partir da distribuiÃÃo de probabilidades que melhor se ajusta Ãs sÃries de retornos. Os outros dois modelos sÃo chamados de condicionais, assumindo que a volatilidade varia ao longo do tempo. Os modelos autoregressivos do tipo GARCH sÃo utilizados para estimar a variÃncia condicional de cada Ãndice, possibilitando a estimaÃÃo do VaR Gaussiano Incondicional e do VaR Best Fitting Incondicional. Em seguida, realizam-se backtestings dos modelos de VaR, revelando a superioridade dos modelos condicionais. Por fim, atravÃs de grÃficos de Balzer, observou-se a performance dos Ãndices por meio de confrontos entre eles. Foi constatado que, para o perÃodo analisado, o IEE vence todos os embates feitos com os demais Ãndices, apresentando a melhor relaÃÃo risco x retorno. O setor imobiliÃrio, representado pelo IMOB, perde todos os confrontos. This work analyzes during the period between 2008/01 and 2011/12 the market risk of six sectorial indexes from the SÃo PauloÂs Stock Market (BM&FBovespa): the real state index (IMOB), the eletric power index (IEE), the consumption index (ICON), the industrial sector index (INDX), the financial index (IFNC) and the telecommunications sector index (ITEL). Throughout the Value-at-Risk metric (VaR), four models are estimated. Two of those models are called unconditional, due to its variance: the Unconditional Gaussian VaR, that admits that the returns follow a normal distribution, and the Unconditional Best Fitting VaR, built from the distribution of probabilities that better fits to the returns series. The other two models are called conditionals, assuming that the volatility changes along the time. The GARCH autoregressive models are used to estimate the conditional variance of each index, allowing an estimation of the Unconditional Gaussian VaR and the Unconditional Best Fitting VaR. Afterwards, the VaR models backtestings are realized, revealing the conditional models superiority. Finally, throughout the BalzerÂs graphics, the indexes performances were observed over the confrontations between them. It was found that, for the analyzed period, the IEE wins every confrontation against the all other indexes, showing the best relation risk x return. The real state index sector, represented by the IMOB, lost all the confronts. 2013-02-21 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11506 por info:eu-repo/semantics/openAccess application/pdf Universidade Federal do Cearà Programa de PÃs-GraduaÃÃo em Economia - CAEN UFC BR reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Ãndices Setoriais Value-at-Risk DistribuiÃÃo Normal Volatilidade Condicional GARCH Backtesting GrÃficos de Balzer Sectorial Indexes Value at Risk Normal Distribution Conditional Volatility GARCH Backtesting BalzerÂs Graphics CIENCIAS SOCIAIS APLICADAS |
spellingShingle |
Ãndices Setoriais Value-at-Risk DistribuiÃÃo Normal Volatilidade Condicional GARCH Backtesting GrÃficos de Balzer Sectorial Indexes Value at Risk Normal Distribution Conditional Volatility GARCH Backtesting BalzerÂs Graphics CIENCIAS SOCIAIS APLICADAS Fernanda Salles de Oliveira Pessoa GestÃo de risco setorial no mercado de aÃÃes brasileiro |
description |
nÃo hà === Este trabalho analisa durante o perÃodo de 01/2008 a 12/2011 o risco de mercado de seis Ãndices setoriais da Bolsa de Valores de SÃo Paulo (BM&FBovespa): o Ãndice imobiliÃrio (IMOB), o Ãndice de energia elÃtrica (IEE), o Ãndice de consumo (ICON), o Ãndice do setor industrial (INDX), o Ãndice financeiro (IFNC) e o Ãndice setorial de telecomunicaÃÃes (ITEL). AtravÃs da mÃtrica Value-at-Risk (VaR) estimam-se quatro modelos. Dois desses modelos sÃo ditos incondicionais no que se refere à variÃncia: o VaR Gaussiano Incondicional, admitindo que os retornos seguem uma distribuiÃÃo normal, e o VaR Best Fitting Incondicional, construÃdo a partir da distribuiÃÃo de probabilidades que melhor se ajusta Ãs sÃries de retornos. Os outros dois modelos sÃo chamados de condicionais, assumindo que a volatilidade varia ao longo do tempo. Os modelos autoregressivos do tipo GARCH sÃo utilizados para estimar a variÃncia condicional de cada Ãndice, possibilitando a estimaÃÃo do VaR Gaussiano Incondicional e do VaR Best Fitting Incondicional. Em seguida, realizam-se backtestings dos modelos de VaR, revelando a superioridade dos modelos condicionais. Por fim, atravÃs de grÃficos de Balzer, observou-se a performance dos Ãndices por meio de confrontos entre eles. Foi constatado que, para o perÃodo analisado, o IEE vence todos os embates feitos com os demais Ãndices, apresentando a melhor relaÃÃo risco x retorno. O setor imobiliÃrio, representado pelo IMOB, perde todos os confrontos. === This work analyzes during the period between 2008/01 and 2011/12 the market risk of six sectorial indexes from the SÃo PauloÂs Stock Market (BM&FBovespa): the real state index (IMOB), the eletric power index (IEE), the consumption index (ICON), the industrial sector index (INDX), the financial index (IFNC) and the telecommunications sector index (ITEL). Throughout the Value-at-Risk metric (VaR), four models are estimated. Two of those models are called unconditional, due to its variance: the Unconditional Gaussian VaR, that admits that the returns follow a normal distribution, and the Unconditional Best Fitting VaR, built from the distribution of probabilities that better fits to the returns series. The other two models are called conditionals, assuming that the volatility changes along the time. The GARCH autoregressive models are used to estimate the conditional variance of each index, allowing an estimation of the Unconditional Gaussian VaR and the Unconditional Best Fitting VaR. Afterwards, the VaR models backtestings are realized, revealing the conditional models superiority. Finally, throughout the BalzerÂs graphics, the indexes performances were observed over the confrontations between them. It was found that, for the analyzed period, the IEE wins every confrontation against the all other indexes, showing the best relation risk x return. The real state index sector, represented by the IMOB, lost all the confronts. |
author2 |
Paulo RogÃrio Faustino Matos |
author_facet |
Paulo RogÃrio Faustino Matos Fernanda Salles de Oliveira Pessoa |
author |
Fernanda Salles de Oliveira Pessoa |
author_sort |
Fernanda Salles de Oliveira Pessoa |
title |
GestÃo de risco setorial no mercado de aÃÃes brasileiro |
title_short |
GestÃo de risco setorial no mercado de aÃÃes brasileiro |
title_full |
GestÃo de risco setorial no mercado de aÃÃes brasileiro |
title_fullStr |
GestÃo de risco setorial no mercado de aÃÃes brasileiro |
title_full_unstemmed |
GestÃo de risco setorial no mercado de aÃÃes brasileiro |
title_sort |
gestão de risco setorial no mercado de aãães brasileiro |
publisher |
Universidade Federal do Cearà |
publishDate |
2013 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11506 |
work_keys_str_mv |
AT fernandasallesdeoliveirapessoa gestaoderiscosetorialnomercadodeaaaesbrasileiro AT fernandasallesdeoliveirapessoa industryriskmanagementinthebrazilianstockmarket |
_version_ |
1718900966991855616 |