Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia
Universidade Federal do Cearà === Este trabalho apresenta a concepÃÃo, projeto e implementaÃÃo de um conversor CC/CC elevador para interligar um painel fotovoltaico a um banco de ultracapacitores para armazenamento de energia em substituiÃÃo Ãs baterias automotivas convencionais. Na saÃda dos ultrac...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal do CearÃ
2012
|
Subjects: | |
Online Access: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9174 |
id |
ndltd-IBICT-oai-www.teses.ufc.br-6334 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Energia - Fontes alternativas Photovoltaic panel Isolated communities Telecommunication systems Rural telephony Ultracapacitor Microcontroller Transceiver ENGENHARIA ELETRICA |
spellingShingle |
Energia - Fontes alternativas Photovoltaic panel Isolated communities Telecommunication systems Rural telephony Ultracapacitor Microcontroller Transceiver ENGENHARIA ELETRICA Josà Mascena Dantas Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
description |
Universidade Federal do Cearà === Este trabalho apresenta a concepÃÃo, projeto e implementaÃÃo de um conversor CC/CC
elevador para interligar um painel fotovoltaico a um banco de ultracapacitores para
armazenamento de energia em substituiÃÃo Ãs baterias automotivas convencionais. Na saÃda
dos ultracapacitores utiliza-se um conversor CC/CC abaixador, que fornece essa energia a um
sistema de telecomunicaÃÃo para suprimento de um transceptor monocanal visando ao
atendimento do serviÃo de telefonia rural/Internet em comunidades isoladas da rede pÃblica
de energia. O sistema pode suprir o serviÃo de comunicaÃÃo para uma comunidade isolada da
rede de energia elÃtrica por atà trÃs horas no perÃodo noturno, quando utilizado um
equipamento rÃdio com cabos, conectores e antena para transmissÃo e recepÃÃo de sinal de
telefonia com potÃncia de consumo de 13 W e com radiaÃÃo solar mÃdia de 5.500 W/m2/dia.
Durante o dia, a energia solar à capturada por um painel fotovoltaico e armazenada em
ultracapacitores atravÃs de um conversor boost. Este conversor possibilita a carga dos
ultracapacitores no ponto de mÃxima potÃncia (MPP) do painel fotovoltaico. O transceptor Ã
ativado quando se tira o fone do gancho e a alimentaÃÃo do sistema vem do painel via
ultracapacitores. Caso haja ligaÃÃes durante o dia, o painel fotovoltaico supre as necessidades
do equipamento transceptor. Ã noite, o painel utilizado nÃo gera energia suficiente para
alimentar o sistema de telecomunicaÃÃo. No perÃodo noturno, caso ocorra uma chamada
telefÃnica para o sistema proposto, o transceptor serà acionado, o assinante deverà retirar o
monofone do gancho do aparelho telefÃnico para realizar o atendimento. Durante essa
operaÃÃo o transceptor consome aproximadamente 13 W de potÃncia, que à fornecida pelos
ultracapacitores, os quais estÃo interligados atravÃs do conversor buck. O sistema proposto Ã
controlado por um microcontrolador e um circuito de controle, que procura o ponto de
mÃxima potÃncia (MPP) do painel fotovoltaico, monitora o nÃvel da tensÃo dos
ultracapacitores e determina o tempo de funcionamento do conversor CC/CC, que possibilita
o fornecimento de energia para o transceptor pelos ultracapacitores. === This work presents the conception, design and implementation of a DC/DC boost converter to
connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the
conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down
converter is used. This converter provides power to a telecommunication system for the
supply of a single channel transceiver with the purpose of providing the services of rural
telephony and Internet in isolated communities from the public energy grid. The system can
provide the communication service to a isolated community from the power grid for up to
three hours at night when used with radio equipment with cables, connectors and antenna for
transmitting and receiving phone signal with consumption power of 13 W and with solar
radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic
panel and stored in ultracapacitors through a boost converter. This converter enables
ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The
transceiver is activated when the phone is taken off the hook and the system power comes
from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel
meets the needs of the transceiver. At night, the panel used does not generate enough energy
to power the telecommunication system. At night, if there is a phone call to the proposed
system, the transceiver will be triggered, and the subscriber should take the handset off the
hook to answer an incoming call. During this operation, the transceiver consumes
approximately 13 W of power, which is provided by ultracapacitors that are interconnected
through the buck converter. The proposed system is controlled by a microcontroller and a
control circuit which tracks the maximum power point (MPP) of the photovoltaic panel,
monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC
converter which enables the provision of power to the transceiver by the ultracapacitors.This work presents the conception, design and implementation of a DC/DC boost converter to
connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the
conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down
converter is used. This converter provides power to a telecommunication system for the
supply of a single channel transceiver with the purpose of providing the services of rural
telephony and Internet in isolated communities from the public energy grid. The system can
provide the communication service to a isolated community from the power grid for up to
three hours at night when used with radio equipment with cables, connectors and antenna for
transmitting and receiving phone signal with consumption power of 13 W and with solar
radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic
panel and stored in ultracapacitors through a boost converter. This converter enables
ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The
transceiver is activated when the phone is taken off the hook and the system power comes
from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel
meets the needs of the transceiver. At night, the panel used does not generate enough energy
to power the telecommunication system. At night, if there is a phone call to the proposed
system, the transceiver will be triggered, and the subscriber should take the handset off the
hook to answer an incoming call. During this operation, the transceiver consumes
approximately 13 W of power, which is provided by ultracapacitors that are interconnected
through the buck converter. The proposed system is controlled by a microcontroller and a
control circuit which tracks the maximum power point (MPP) of the photovoltaic panel,
monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC
converter which enables the provision of power to the transceiver by the ultracapacitors.This work presents the conception, design and implementation of a DC/DC boost converter to
connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the
conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down
converter is used. This converter provides power to a telecommunication system for the
supply of a single channel transceiver with the purpose of providing the services of rural
telephony and Internet in isolated communities from the public energy grid. The system can
provide the communication service to a isolated community from the power grid for up to
three hours at night when used with radio equipment with cables, connectors and antenna for
transmitting and receiving phone signal with consumption power of 13 W and with solar
radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic
panel and stored in ultracapacitors through a boost converter. This converter enables
ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The
transceiver is activated when the phone is taken off the hook and the system power comes
from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel
meets the needs of the transceiver. At night, the panel used does not generate enough energy
to power the telecommunication system. At night, if there is a phone call to the proposed
system, the transceiver will be triggered, and the subscriber should take the handset off the
hook to answer an incoming call. During this operation, the transceiver consumes
approximately 13 W of power, which is provided by ultracapacitors that are interconnected
through the buck converter. The proposed system is controlled by a microcontroller and a
control circuit which tracks the maximum power point (MPP) of the photovoltaic panel,
monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC
converter which enables the provision of power to the transceiver by the ultracapacitors. |
author2 |
CÃcero Marcos Tavares Cruz |
author_facet |
CÃcero Marcos Tavares Cruz Josà Mascena Dantas |
author |
Josà Mascena Dantas |
author_sort |
Josà Mascena Dantas |
title |
Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
title_short |
Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
title_full |
Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
title_fullStr |
Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
title_full_unstemmed |
Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
title_sort |
sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia |
publisher |
Universidade Federal do Cearà |
publishDate |
2012 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9174 |
work_keys_str_mv |
AT josamascenadantas sistemafotovoltaicoparacomunidadesisoladasutilizandoultracapacitoresparaarmazenamentodeenergia AT josamascenadantas photovoltaicsystemforisolatedcommunitiesusingultracapacitorsforenergystorage |
_version_ |
1718900139480842240 |
spelling |
ndltd-IBICT-oai-www.teses.ufc.br-63342019-01-21T22:57:29Z Sistema fotovoltaico para comunidades isoladas utilizando ultracapacitores para armazenamento de energia Photovoltaic system for isolated communities using ultracapacitors for energy storage Josà Mascena Dantas CÃcero Marcos Tavares Cruz Energia - Fontes alternativas Photovoltaic panel Isolated communities Telecommunication systems Rural telephony Ultracapacitor Microcontroller Transceiver ENGENHARIA ELETRICA Universidade Federal do Cearà Este trabalho apresenta a concepÃÃo, projeto e implementaÃÃo de um conversor CC/CC elevador para interligar um painel fotovoltaico a um banco de ultracapacitores para armazenamento de energia em substituiÃÃo Ãs baterias automotivas convencionais. Na saÃda dos ultracapacitores utiliza-se um conversor CC/CC abaixador, que fornece essa energia a um sistema de telecomunicaÃÃo para suprimento de um transceptor monocanal visando ao atendimento do serviÃo de telefonia rural/Internet em comunidades isoladas da rede pÃblica de energia. O sistema pode suprir o serviÃo de comunicaÃÃo para uma comunidade isolada da rede de energia elÃtrica por atà trÃs horas no perÃodo noturno, quando utilizado um equipamento rÃdio com cabos, conectores e antena para transmissÃo e recepÃÃo de sinal de telefonia com potÃncia de consumo de 13 W e com radiaÃÃo solar mÃdia de 5.500 W/m2/dia. Durante o dia, a energia solar à capturada por um painel fotovoltaico e armazenada em ultracapacitores atravÃs de um conversor boost. Este conversor possibilita a carga dos ultracapacitores no ponto de mÃxima potÃncia (MPP) do painel fotovoltaico. O transceptor à ativado quando se tira o fone do gancho e a alimentaÃÃo do sistema vem do painel via ultracapacitores. Caso haja ligaÃÃes durante o dia, o painel fotovoltaico supre as necessidades do equipamento transceptor. à noite, o painel utilizado nÃo gera energia suficiente para alimentar o sistema de telecomunicaÃÃo. No perÃodo noturno, caso ocorra uma chamada telefÃnica para o sistema proposto, o transceptor serà acionado, o assinante deverà retirar o monofone do gancho do aparelho telefÃnico para realizar o atendimento. Durante essa operaÃÃo o transceptor consome aproximadamente 13 W de potÃncia, que à fornecida pelos ultracapacitores, os quais estÃo interligados atravÃs do conversor buck. O sistema proposto à controlado por um microcontrolador e um circuito de controle, que procura o ponto de mÃxima potÃncia (MPP) do painel fotovoltaico, monitora o nÃvel da tensÃo dos ultracapacitores e determina o tempo de funcionamento do conversor CC/CC, que possibilita o fornecimento de energia para o transceptor pelos ultracapacitores. This work presents the conception, design and implementation of a DC/DC boost converter to connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down converter is used. This converter provides power to a telecommunication system for the supply of a single channel transceiver with the purpose of providing the services of rural telephony and Internet in isolated communities from the public energy grid. The system can provide the communication service to a isolated community from the power grid for up to three hours at night when used with radio equipment with cables, connectors and antenna for transmitting and receiving phone signal with consumption power of 13 W and with solar radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic panel and stored in ultracapacitors through a boost converter. This converter enables ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The transceiver is activated when the phone is taken off the hook and the system power comes from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel meets the needs of the transceiver. At night, the panel used does not generate enough energy to power the telecommunication system. At night, if there is a phone call to the proposed system, the transceiver will be triggered, and the subscriber should take the handset off the hook to answer an incoming call. During this operation, the transceiver consumes approximately 13 W of power, which is provided by ultracapacitors that are interconnected through the buck converter. The proposed system is controlled by a microcontroller and a control circuit which tracks the maximum power point (MPP) of the photovoltaic panel, monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC converter which enables the provision of power to the transceiver by the ultracapacitors.This work presents the conception, design and implementation of a DC/DC boost converter to connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down converter is used. This converter provides power to a telecommunication system for the supply of a single channel transceiver with the purpose of providing the services of rural telephony and Internet in isolated communities from the public energy grid. The system can provide the communication service to a isolated community from the power grid for up to three hours at night when used with radio equipment with cables, connectors and antenna for transmitting and receiving phone signal with consumption power of 13 W and with solar radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic panel and stored in ultracapacitors through a boost converter. This converter enables ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The transceiver is activated when the phone is taken off the hook and the system power comes from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel meets the needs of the transceiver. At night, the panel used does not generate enough energy to power the telecommunication system. At night, if there is a phone call to the proposed system, the transceiver will be triggered, and the subscriber should take the handset off the hook to answer an incoming call. During this operation, the transceiver consumes approximately 13 W of power, which is provided by ultracapacitors that are interconnected through the buck converter. The proposed system is controlled by a microcontroller and a control circuit which tracks the maximum power point (MPP) of the photovoltaic panel, monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC converter which enables the provision of power to the transceiver by the ultracapacitors.This work presents the conception, design and implementation of a DC/DC boost converter to connect a photovoltaic panel to a bank of ultracapacitors for energy storage to replace the conventional automotive batteries. In the output of ultracapacitors a DC/DC step-down converter is used. This converter provides power to a telecommunication system for the supply of a single channel transceiver with the purpose of providing the services of rural telephony and Internet in isolated communities from the public energy grid. The system can provide the communication service to a isolated community from the power grid for up to three hours at night when used with radio equipment with cables, connectors and antenna for transmitting and receiving phone signal with consumption power of 13 W and with solar radiation rate of 5.500 W/m2/day. During the day solar energy is captured by a photovoltaic panel and stored in ultracapacitors through a boost converter. This converter enables ultracapacitors to charge at the maximum power point (MPP) of the photovoltaic panel. The transceiver is activated when the phone is taken off the hook and the system power comes from the panel via ultracapacitors. If there are calls during the day, the photovoltaic panel meets the needs of the transceiver. At night, the panel used does not generate enough energy to power the telecommunication system. At night, if there is a phone call to the proposed system, the transceiver will be triggered, and the subscriber should take the handset off the hook to answer an incoming call. During this operation, the transceiver consumes approximately 13 W of power, which is provided by ultracapacitors that are interconnected through the buck converter. The proposed system is controlled by a microcontroller and a control circuit which tracks the maximum power point (MPP) of the photovoltaic panel, monitors the voltage level of ultracapacitors and determines the operating time of the DC/DC converter which enables the provision of power to the transceiver by the ultracapacitors. 2012-12-21 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=9174 por info:eu-repo/semantics/openAccess application/pdf Universidade Federal do Cearà Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica UFC BR reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |