Summary: | We present a version of Chengâs Eigenvalue Comparison Theorem, where the limitation of the sectional and Ricci curvature is changed by limiting the mean curvature of the ball away. Furthermore, the present construction of smooth metrics gk,in [0;r] x S3, non-isometric to the canonical metric of constant sectional curvature k, cank , such that the balls geodesic Bgk(r)=([0,r]x S3,gk),Bcank(r)=([0,r]x S3,cank) have the same first eigenvalue, the same volume and the distances spheres ӘBgk(s)and ӘBcank(s),0 < s ≤ r, has the same mean curvature. Finally, this version of Chengâs Eigenvalue Comparison Theorem to construct
examples of Riemannian manifolds M with positive fundamental tone.
=== No presente trabalho apresentamos uma versÃo do Teorema de ComparaÃÃo de Autovalores de Cheng, onde a limitaÃÃo das curvaturas seccional e Ricci à trocada pela limitaÃÃo da
curvatura mÃdia das esferas geodÃsicas. AlÃm disso, apresentamos a construÃÃo de mÃtricas
suaves, gk , em [0, r] x S3, nÃo isomÃtrica a mÃtrica canÃnica de curvatura seccional constante k, cank , tal que as bolas geodÃsicas Bgk (r) = ([0, r] x S3,gk ), Bcank (r) = ([0, r] x S3,cank ) tÃm o mesmo primeiro autovalor, mesmo volume e as esferas geodÃsicas ӘBgk (s) e ӘBcank (s), 0< s ≤ r, tem a mesma curvatura mÃdia. Finalmente, aplicamos esta versÃo do Teorema de ComparaÃÃo de Autovalores de Cheng para a construÃÃo de exemplos de variedades Riemanniana M com tom fundamental positivo.
|