Forecast of real-dollar exchange under a framework of asset pricing

Given the wide range of macroeconomic, financial and econometric frameworks commonly used to accommodate uncomfortable empirical evidence associated with the Forex market, this article aims to model and predict the monthly variation in American Dollar-Brazilian Real exchange rate, from January 2000...

Full description

Bibliographic Details
Main Author: Giovanni Silva BevilÃqua
Other Authors: Paulo RogÃrio Faustino Matos
Format: Others
Language:Portuguese
Published: Universidade Federal do Cearà 2011
Subjects:
Online Access:http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8421
Description
Summary:Given the wide range of macroeconomic, financial and econometric frameworks commonly used to accommodate uncomfortable empirical evidence associated with the Forex market, this article aims to model and predict the monthly variation in American Dollar-Brazilian Real exchange rate, from January 2000 to December 2009, based on asset pricing theory. Wang (2008) and Engel and West (2005) are closer to ours, in terms of fundamentals of finance, while methodologically, we are close to Chong, Chung and Ahmad (2002) and da Costa et al. (2010). Our work is relevant to the empirical literature, since the prediction results are better than the random walk approach ones. The prediction error is about 5% and 14% for the exchange rate variation and in level, respectively. In 57.5% of the changes, our model predicts the correct change direction. The main contribution based on this framework, already used to understand the Forward Premium Puzzle for advancedeconomies, consists in the derivation and the implications of a system of linear relationships characterized by a Bivariate Generalized Autoregressive Conditional Heteroskedasticity-in-Mean (GARCH-M), useful empirically, once we have extracted a time series for a Stochastic Discount Factor (SDF) able to price the covered and the uncovered trading with U.S. Government bonds. The results suggest to the theoretical literature that, at least for monthly frequency, one should not omit the temporal variation of conditional moments of the second order. The hypothesis about the lognormal distribution of discounted returns and a parsimonious specification for conditional Heteroskedastic models can influence the predictive power of SDF, as well as the effects of the inclusion of risk premium. === Diante da vasta gama de arcabouÃos macroeconÃmicos, economÃtricos e financeiros que visam acomodar evidÃncias empÃricas desconfortÃveis associadas ao mercado cambial, este artigo visa modelar e prever a variaÃÃo mensal entre as moedas real brasileiro e dÃlar americano, de janeiro de 2000 a dezembro de 2009, baseado na teoria de apreÃamento de ativos. Este estudo agrega-se à literatura empÃrica, ao obter resultados preditivos superiores a um modelo de passeio aleatÃrio, com erros de previsÃo da ordem de grandeza de 5% e 14% para depreciaÃÃo e para o cÃmbio em nÃvel, respectivamente, e um acerto em 57,5% das vezes com relaÃÃo à direÃÃo da variaÃÃo cambial. Alinhado em fundamentos a Wang (2008) e Engel e West (2005) e metodologicamente a Chong, Chung e Ahmad (2002) e da Costa et al. (2010), a principal contribuiÃÃo no uso deste arcabouÃo, jà utilizado no entendimento do Forward Premium Puzzle para economias avanÃadas, consiste na derivaÃÃo e nas implicaÃÃes de um sistema de relaÃÃes lineares caracterizado por um Generalized Autoregressive Conditional Heteroskedasticity-in- Mean (GARCH-M) bivariado, o qual pode ser testÃvel, a partir da extraÃÃo via componentes principais da sÃrie temporal para um Fator EstocÃstico de Desconto capaz de apreÃar operaÃÃes coberta e descoberta de aquisiÃÃo de tÃtulos do governo americano. Os resultados sugerem, ainda, à literatura teÃrica que, ao menos para frequÃncia mensal, nÃo se deve desprezar a variaÃÃo temporal dos momentos condicionais de segunda ordem. A hipÃtese sobre a distribuiÃÃo lognormal dos retornos descontados e uma especificaÃÃo parcimoniosa para modelos de heterocedasticidade condicional podem prejudicar a capacidade preditiva associada do Fator EstocÃstico de Desconto, assim como os efeitos da incorporaÃÃo do prÃmio de risco.