Summary: | CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior === Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico === Neste trabalho estudaremos o Ãndice de hipersuperfÃcies mÃnimas e de curvatura mÃdia constante imersas na esfera Euclidiana Sn+1. Mais precisamente, definiremos o operador de Jacobi de hipersuperfÃcies mÃnimas e de curvatura mÃdia constante usando as fÃrmulas de variaÃÃo de Ãrea, e em seguida estabeleceremos estimativas por baixo para o Ãndice de hipersuperfÃcies mÃnimas imersas em Sn+1 . AlÃm disso, caracterizaremos os toros de Clifford mÃnimos como as hipersuperfÃcies compactas, orientÃveis e mÃnimas em Sn+1 tais que a = -2n, onde a à o primeiro autovalor do operador de Jacobi. Mostraremos que as esferas totalmente umbÃlicas Sn (r) em Sn+1, com 0 < r < 1, sÃo as hipersuperfÃcies fracamente estÃveis em Sn+1. Por Ãltimo, estabeleceremos estimativas por baixo para o Ãndice fraco de hipersuperfÃcies de curvatura mÃdia constante em Sn+1 e caracterizaremos os toros de Clifford Sk (r) x Sn-k (1 - r2) de curvatura mÃdia constante como as hipersuperfÃcies de curvatura mÃdia constante tais que o Ãndice fraco à igual a n + 2, onde (k/n + 2 ) ≤ r ≤ (k + 2/n + 2) Â. === The aim of this work is to study the index either of compact minimal or constant mean curvature hypersurfaces immersed into the Euclidean unit sphere Sn+1. The main ingredient to do that is the Jacobi operator which appears on the second formula of variation of area. On the minimal case we shall present low estimative for the index and we shall show that the minimal Clifford tori are the unique minimal hypersurfaces over which a = -2n , where a stands for the first eigenvalue of the Jacobi operator. Moreover, it is easy to see that totally umbilical sphere Sn (r) em Sn+1 , with 0 < r < 1, are weakly stable. Finally we shall show that the index is bigger that or equal to n+2 for compact constant mean curvature hypersurfaces of Sn+1 provides they have constant scalar curvature. Moreover , Clifford tori Sk (r) x Sn-k (1 - r2) attain such index provided (k/n + 2 ) ≤ r ≤ (k + 2/n + 2) Â.
|