Caracterizações da esfera em formas espaciais

PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. === Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-20T20:40:07Z No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1180...

Full description

Bibliographic Details
Main Author: Pinto, Victor Gomes
Other Authors: Colares, Antonio Gervasio
Language:Portuguese
Published: 2017
Subjects:
Online Access:http://www.repositorio.ufc.br/handle/riufc/24227
id ndltd-IBICT-oai-www.repositorio.ufc.br-riufc-24227
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic r-ésima curvatura média
Equação de Poisson
Esferas Geodésicas
Hipersuperfícies
r-mean curvature
Poisson equation
Geodesic spheres
Hypersurfaces
spellingShingle r-ésima curvatura média
Equação de Poisson
Esferas Geodésicas
Hipersuperfícies
r-mean curvature
Poisson equation
Geodesic spheres
Hypersurfaces
Pinto, Victor Gomes
Caracterizações da esfera em formas espaciais
description PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. === Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-20T20:40:07Z No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1180135 bytes, checksum: f3aa196ed8b0d38c5a2a33642fdb7d0b (MD5) === Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia Andrea, Favor informar ao aluno os motivos da rejeição. Faltou a conclusão (item obrigatório) E as referências não estão normalizadas. Seguem os modelos ARTIGOS DE PERIÓDICOS: ALENCAR, H. ; COLARES, A. G. - Integral formulas for the r-mean curvature linearized operator of a hypersurface. Annals of Global Analysis and Geometry, v. 16, p. 203-220, 1998. OBS: o TÍTULO DO PERIÓDICO DEVE FICAR EM NEGRITO OU ITÁLICO. LIVROS: CARMO, M. P. do. Geometria riemanniana. Rio de Janeiro : IMPA, 2008.( Projeto Euclides) OBS: O TÍTULO DO LIVRO DEVE FICAR EM NEGRITO OU ITÁLICO DISSERTAÇÕES: PINHEIRO, N. R. Hipersuperfíıcies com curvatura média constante e hiperplanos. Ano. Nº de folhas. Dissertação ( Mestrado) em nome do curso, local, ano. OBS: o TÍTULO DA DISSERTAÇÃO DEVE FICAR EM NEGRITO OU ITÁLICO Rocilda on 2017-07-21T11:38:59Z (GMT) === Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-21T18:48:58Z No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) === Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-24T15:34:13Z (GMT) No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) === Made available in DSpace on 2017-07-24T15:34:13Z (GMT). No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) Previous issue date: 2017-07-06 === In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mn e x: M → Q^(n+1)_c a isometric immersion, x(M) is a geodesic sphere in Q^n+1_c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qn+1 c by the totally geodesic hypersurfaces (Q^n_c)p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation = if, and only if, M is isometric to the n-sphere Sn(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M ! Qn+1, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr 6= 0 and there are nonnegative constants C1;C2; :::;Cr1 such that Hr = Pr1 i=1 CiHi; then x(M) is a geodesic sphere, where Qn+1 is Rn+1, Hn+1 or Sn+1 + . === Neste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mn e x: M → Q^(n+1)_c uma imersão isométrica, onde Q^n+1_c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Q^n+1_c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Q^n+1_c pelas hipersuperfícies totalmente geodésicas (Q^n_c)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano R^(n+1), com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera S^n(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Q^(n+1), onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑_(i=1)^(r-1)▒〖C_i H_i 〗 ; então x(M) é uma esfera geodésica, onde Q^(n+1) é R^(n+1), H^(n+1) ou S^(n+1)_+ .
author2 Colares, Antonio Gervasio
author_facet Colares, Antonio Gervasio
Pinto, Victor Gomes
author Pinto, Victor Gomes
author_sort Pinto, Victor Gomes
title Caracterizações da esfera em formas espaciais
title_short Caracterizações da esfera em formas espaciais
title_full Caracterizações da esfera em formas espaciais
title_fullStr Caracterizações da esfera em formas espaciais
title_full_unstemmed Caracterizações da esfera em formas espaciais
title_sort caracterizações da esfera em formas espaciais
publishDate 2017
url http://www.repositorio.ufc.br/handle/riufc/24227
work_keys_str_mv AT pintovictorgomes caracterizacoesdaesferaemformasespaciais
AT pintovictorgomes characterizationsofthesphereinspaceforms
_version_ 1718835732521418752
spelling ndltd-IBICT-oai-www.repositorio.ufc.br-riufc-242272019-01-21T17:16:39Z Caracterizações da esfera em formas espaciais Characterizations of the sphere in space forms. Pinto, Victor Gomes Colares, Antonio Gervasio r-ésima curvatura média Equação de Poisson Esferas Geodésicas Hipersuperfícies r-mean curvature Poisson equation Geodesic spheres Hypersurfaces PINTO, V. G. Caracterizações da esfera em formas espaciais. 2017. 79 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-20T20:40:07Z No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1180135 bytes, checksum: f3aa196ed8b0d38c5a2a33642fdb7d0b (MD5) Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia Andrea, Favor informar ao aluno os motivos da rejeição. Faltou a conclusão (item obrigatório) E as referências não estão normalizadas. Seguem os modelos ARTIGOS DE PERIÓDICOS: ALENCAR, H. ; COLARES, A. G. - Integral formulas for the r-mean curvature linearized operator of a hypersurface. Annals of Global Analysis and Geometry, v. 16, p. 203-220, 1998. OBS: o TÍTULO DO PERIÓDICO DEVE FICAR EM NEGRITO OU ITÁLICO. LIVROS: CARMO, M. P. do. Geometria riemanniana. Rio de Janeiro : IMPA, 2008.( Projeto Euclides) OBS: O TÍTULO DO LIVRO DEVE FICAR EM NEGRITO OU ITÁLICO DISSERTAÇÕES: PINHEIRO, N. R. Hipersuperfíıcies com curvatura média constante e hiperplanos. Ano. Nº de folhas. Dissertação ( Mestrado) em nome do curso, local, ano. OBS: o TÍTULO DA DISSERTAÇÃO DEVE FICAR EM NEGRITO OU ITÁLICO Rocilda on 2017-07-21T11:38:59Z (GMT) Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-21T18:48:58Z No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-24T15:34:13Z (GMT) No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) Made available in DSpace on 2017-07-24T15:34:13Z (GMT). No. of bitstreams: 1 2017_dis_vgpinto.pdf: 1184804 bytes, checksum: 357d2ee050e65edb2839093ba455b0db (MD5) Previous issue date: 2017-07-06 In this work we present three characterizations of the sphere. Initially, it will be shown that given a compact and oriented hypersurface Mn e x: M → Q^(n+1)_c a isometric immersion, x(M) is a geodesic sphere in Q^n+1_c if, and only if, Hr+1 is a nonzero constant and the set of points that are omitted in Qn+1 c by the totally geodesic hypersurfaces (Q^n_c)p tangent to x(M) is non-empty. As a second result, let M be an orientable compact and connected hypersurface with non-negative support function of the Euclidean space Rn+1 and Minkowski's integrand . We prove that the mean curvature function of the hypersurface M is the solution of the Poisson equation = if, and only if, M is isometric to the n-sphere Sn(c) of constant curvature c. similar characterization is proved for a hypersurface with the scalar curvature satisfying the same equation. For the third result we consider an isometric immersion x : M ! Qn+1, where M is a compact hypersurface such that x(M) is convex, and it will be proved that if any r-mean curvature is such that Hr 6= 0 and there are nonnegative constants C1;C2; :::;Cr1 such that Hr = Pr1 i=1 CiHi; then x(M) is a geodesic sphere, where Qn+1 is Rn+1, Hn+1 or Sn+1 + . Neste trabalho serão apresentadas três caracterizações da esfera. Primeiramente, será mostrado que dada uma hipersuperfície compacta e orientada Mn e x: M → Q^(n+1)_c uma imersão isométrica, onde Q^n+1_c é uma forma espacial simplesmente conexa, isto é, uma variedade Riemanniana de curvatura seccional constante c, x(M) é uma esfera geodésica em Q^n+1_c se, e somente se, a (r + 1)-ésima curvatura média Hr+1 é uma constante não nula e o conjunto dos pontos que são omitidos em Q^n+1_c pelas hipersuperfícies totalmente geodésicas (Q^n_c)p tangentes a x(M) é não vazio. Como segundo resultado, seja uma hipersuperfície compacta, conexa e orientável M do espaço euclidiano R^(n+1), com função suporte não negativa e integrando de Minkowski σ. Será provado que a função curvatura média α da hipersuperfície é solução da equação de Poisson Δϕ = σ se, e somente se, M é isométrica à n-esfera S^n(c) de curvatura média c. Uma caracterização similar é provada para uma hipersuperfície com a curvatura escalar satisfazendo a mesma equação. Para o terceiro resultado é considerado uma imersão isométrica x: M → Q^(n+1), onde M é uma hipersuperfície compacta tal que x(M) é convexa, e será provado que, se alguma curvatura r-média é tal que Hr ≠ 0 e existem constantes não negativas C1, C2, ..., Cr-1 tais que Hr =∑_(i=1)^(r-1)▒〖C_i H_i 〗 ; então x(M) é uma esfera geodésica, onde Q^(n+1) é R^(n+1), H^(n+1) ou S^(n+1)_+ . 2017-07-24T15:34:13Z 2017-07-24T15:34:13Z 2017-07-06 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis PINTO, V. G. (2017) http://www.repositorio.ufc.br/handle/riufc/24227 por info:eu-repo/semantics/openAccess reponame:Repositório Institucional da UFC instname:Universidade Federal do Ceará instacron:UFC