Summary: | An important problem in Physics concerns the study of stochastic processes and fluctuations away from the mean of dynamical variables. In a wide range of systems, some of the observed variables have a macroscopic quality, in the sense that they represent averages or sums over time or space of "microscopic" quantities. When long-range memory or correlation effects do not play a significant role, then the necessary and sufficient conditions for the Central Limit Theorem to hold can become satisfied. Quite often, the second moments of the studied dynamical variable do not diverge, hence in many important instances, the fluctuations of many systems follow Gaussian statistics. On the other hand, complex systems generate some variabilities that often deviate them from Gaussian statistics. Here, we focus on two properties related to Gaussian fluctuations: (i) monofractality and (ii) homoscedasticity. Specifically, we first address the general question about the nature of the relationship between multifractality and heteroscedasticity. We applied multifractal detrended fluctuation analysis to a nonstationary high frequency financial time series obtained from currency markets. As a second test, we applied the technique to the audio time series of Beethoven's fifth symphony. We obtained results suggesting that heteroscedasticity can cause or increase multifractality. We also investigate in greater detail the convergence to the homoskedastic and monofractal Gaussian regime, using the mathematical formalism of Lévy sections, as previously applied to time series. We report several conclusions related to these questions and discuss the generality of these results in the context of the physics of complex systems. === Conselho Nacional de Desenvolvimento Científico e Tecnológico === Um importante problema em Física está relacionado ao estudo de processos estocásticos e flutuações de variáveis dinâmicas. Em uma variedade de sistemas, algumas das variáveis observadas têm uma qualidade macroscópica, no sentido de que elas representam a média ou a soma sobre o espaço ou tempo de quantidades microscópicas. Quando efeitos de memória de longo alcance ou correlação não desempenharem um papel significativo, então as condições necessárias e suficientes para a validade do Teorema do Limite Central podem ser satisfeitas. Frequentemente o segundo momento da variável em questão não diverge. Consequentemente em muitos exemplos importantes, as flutuações de muitos sistemas seguem uma estatística Gaussiana. Em contraste, sistemas complexos geram flutuações que muitas vezes os desviam da estatística Gaussiana. Aqui, nós focamos em duas propriedades relacionadas à flutuações Gaussianas: (i) monofractalidade e (ii) homocedasticidade. Especificamente, discutimos primeiro a questão geral sobre a natureza da relação entre multifractalidade e heterocedasticidade. Aplicamos a multifractal detrended fluctuations analysis a uma série temporal financeira não estacionária e de alta freqüência referente à taxa cambial. Como um segundo teste, aplicamos a mesma técnica de análise para a série de áudio da quinta sinfonia de Beethoven. Obtivemos resultados que indicam que a heterocedasticidade pode causar ou aumentar a multifractalidade. Também investigamos em detalhes a convergência para o regime homocedástico e monofratal Gaussiano usando o método matemático de seções de Lévy, como previamente aplicado a séries temporais. Apresentamos conclusões relacionadas a estes questionamentos e discutimos a generalidade destes resultados no contexto da Física de sistemas complexos.
|