HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks
O recente campo de Deep Learning introduziu a área de Aprendizagem de Máquina novos métodos baseados em representações distribuídas e abstratas dos dados de treinamento ao longo de estruturas hierárquicas. A organização hierárquica de camadas permite que esses métodos guardem informações distribuída...
Main Author: | Pereira, Renato de Pontes |
---|---|
Other Authors: | Engel, Paulo Martins |
Format: | Others |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10183/80752 |
Similar Items
-
HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks
by: Pereira, Renato de Pontes
Published: (2013) -
HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks
by: Pereira, Renato de Pontes
Published: (2013) -
Accelerating Robot Trajectory Learning for Stochastic Tasks
by: Josip Vidakovic, et al.
Published: (2020-01-01) -
Collaborative Learning of Hierarchical Task Networks from Demonstration and Instruction
by: Mohseni-Kabir, Anahita
Published: (2015) -
A connectionist approach for incremental function approximation and on-line tasks
by: Heinen, Milton Roberto
Published: (2011)