Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior

Neste trabalho, estudamos a interação de íons com um conjunto quase-monocromático de ondas eletrostáticas de frequência na faixa das frequências híbridas inferiores, propagando-se perpendicularmente a um campo magnético uniforme. Consideramos que as fases das ondas são aleatoriamente distribuídas (o...

Full description

Bibliographic Details
Main Author: Tozawa, Lucio Minoru
Other Authors: Ziebell, Luiz Fernando
Format: Others
Language:Portuguese
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10183/3718
id ndltd-IBICT-oai-www.lume.ufrgs.br-10183-3718
record_format oai_dc
spelling ndltd-IBICT-oai-www.lume.ufrgs.br-10183-37182019-01-22T01:20:39Z Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior Tozawa, Lucio Minoru Ziebell, Luiz Fernando Difusão estocástica Íons Propagacao de ondas eletromagneticas em plasmas Sistemas hamiltonianos Transformações de fase Neste trabalho, estudamos a interação de íons com um conjunto quase-monocromático de ondas eletrostáticas de frequência na faixa das frequências híbridas inferiores, propagando-se perpendicularmente a um campo magnético uniforme. Consideramos que as fases das ondas são aleatoriamente distribuídas (ondas incoerentes), tratando o caso de ondas de fases coerentes (ondas coerentes) como um caso particular. Derivamos o Hamiltoniano adequado a esse sistema, e deduzimos as equações de movimento, cujas soluções são analisadas numericamente, mostrando a ocorrência de difusão estocástica no espaçoo de fase ângulo-ação, para amplitudes de onda suficientemente grandes. Também fazemos estimativas sobre a amplitude mínima (threshold) para o aparecimento de ilhas de primeira ordem no espaço de fase. Estimamos, também, o limiar para as ilhas de segunda ordem e de ordens maiores, bem como o limiar de estocasticidade. A análise mostra que para o caso de várias ondas o comportamento estocástico ocorre antes do limiar de estocasticidade comparado com o caso de uma onda. No caso de ondas coerentes, observa-se que o limiar de estocasticidade diminui com o aumento do número de ondas que comp˜oem o conjunto de ondas, proporcionalmente ao inverso da raiz quadrada deste número, portanto, tendendo a ser nulo no limite em que o número de ondas no pacote tende a infinito. No caso de ondas incoerentes, observa-se também uma diminuição do limiar de estocasticidade com o aumento do número de ondas, mas nesse caso, saturando com valor até um terço do valor do limiar de estocasticidade para o caso de uma onda. Observa-se também que o limite superior da região de estocasticidade no espaço de fase aumenta com o aumento do número de ondas. No caso de ondas coerentes, esse aumento é proporcional à raiz cúbica do número de ondas que compõem o conjunto de ondas. No caso de ondas incoerentes o limite superior da região de estocasticidade têm um aumento de até o dobro em relação ao caso de uma onda. A análise também mostra que o mecanismo da estocasticidade para o caso de várias ondas é diferente do mecanismo atuante no caso de uma onda. No caso de uma onda, a estocasticidade ocorre por superposição de ilhas de ordens maiores do que um, com o aumento da intensidade da onda. No caso de várias ondas, a presençaa de ondas de frequências próximas à frequência de ressonância causa pequenas perturbações na trajetória principal das partículas, causada pela onda central, espalhando-a pelo espaço de fase de forma mais eficiente que o mecanismo de estocasticidade para o caso de uma onda. 2007-06-06T17:30:07Z 2003 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10183/3718 000391873 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Difusão estocástica
Íons
Propagacao de ondas eletromagneticas em plasmas
Sistemas hamiltonianos
Transformações de fase
spellingShingle Difusão estocástica
Íons
Propagacao de ondas eletromagneticas em plasmas
Sistemas hamiltonianos
Transformações de fase
Tozawa, Lucio Minoru
Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
description Neste trabalho, estudamos a interação de íons com um conjunto quase-monocromático de ondas eletrostáticas de frequência na faixa das frequências híbridas inferiores, propagando-se perpendicularmente a um campo magnético uniforme. Consideramos que as fases das ondas são aleatoriamente distribuídas (ondas incoerentes), tratando o caso de ondas de fases coerentes (ondas coerentes) como um caso particular. Derivamos o Hamiltoniano adequado a esse sistema, e deduzimos as equações de movimento, cujas soluções são analisadas numericamente, mostrando a ocorrência de difusão estocástica no espaçoo de fase ângulo-ação, para amplitudes de onda suficientemente grandes. Também fazemos estimativas sobre a amplitude mínima (threshold) para o aparecimento de ilhas de primeira ordem no espaço de fase. Estimamos, também, o limiar para as ilhas de segunda ordem e de ordens maiores, bem como o limiar de estocasticidade. A análise mostra que para o caso de várias ondas o comportamento estocástico ocorre antes do limiar de estocasticidade comparado com o caso de uma onda. No caso de ondas coerentes, observa-se que o limiar de estocasticidade diminui com o aumento do número de ondas que comp˜oem o conjunto de ondas, proporcionalmente ao inverso da raiz quadrada deste número, portanto, tendendo a ser nulo no limite em que o número de ondas no pacote tende a infinito. No caso de ondas incoerentes, observa-se também uma diminuição do limiar de estocasticidade com o aumento do número de ondas, mas nesse caso, saturando com valor até um terço do valor do limiar de estocasticidade para o caso de uma onda. Observa-se também que o limite superior da região de estocasticidade no espaço de fase aumenta com o aumento do número de ondas. No caso de ondas coerentes, esse aumento é proporcional à raiz cúbica do número de ondas que compõem o conjunto de ondas. No caso de ondas incoerentes o limite superior da região de estocasticidade têm um aumento de até o dobro em relação ao caso de uma onda. A análise também mostra que o mecanismo da estocasticidade para o caso de várias ondas é diferente do mecanismo atuante no caso de uma onda. No caso de uma onda, a estocasticidade ocorre por superposição de ilhas de ordens maiores do que um, com o aumento da intensidade da onda. No caso de várias ondas, a presençaa de ondas de frequências próximas à frequência de ressonância causa pequenas perturbações na trajetória principal das partículas, causada pela onda central, espalhando-a pelo espaço de fase de forma mais eficiente que o mecanismo de estocasticidade para o caso de uma onda.
author2 Ziebell, Luiz Fernando
author_facet Ziebell, Luiz Fernando
Tozawa, Lucio Minoru
author Tozawa, Lucio Minoru
author_sort Tozawa, Lucio Minoru
title Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
title_short Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
title_full Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
title_fullStr Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
title_full_unstemmed Dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
title_sort dinâmica estocástica de íons sujeitos a um conjunto quase-monocromático de ondas do tipo híbrida inferior
publishDate 2007
url http://hdl.handle.net/10183/3718
work_keys_str_mv AT tozawaluciominoru dinamicaestocasticadeionssujeitosaumconjuntoquasemonocromaticodeondasdotipohibridainferior
_version_ 1718934268728573952