Detecção de mudanças a partir de imagens de fração

A detecção de mudanças na superfície terrestre é o principal objetivo em aplicações de sensoriamento remoto multitemporal. Sabe-se que imagens adquiridas em datas distintas tendem a ser altamente influenciadas por problemas radiométricos e de registro. Utilizando imagens de fração, obtidas a partir...

Full description

Bibliographic Details
Main Author: Bittencourt, Helio Radke
Other Authors: Saldanha, Dejanira Luderitz
Format: Others
Language:Portuguese
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/10183/36053
id ndltd-IBICT-oai-www.lume.ufrgs.br-10183-36053
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Sensoriamento remoto
Geografia física
Imagens digitais
Change detection
Fraction images
Digital image processing
Hard classification
Soft classification
Fuzzy classification
spellingShingle Sensoriamento remoto
Geografia física
Imagens digitais
Change detection
Fraction images
Digital image processing
Hard classification
Soft classification
Fuzzy classification
Bittencourt, Helio Radke
Detecção de mudanças a partir de imagens de fração
description A detecção de mudanças na superfície terrestre é o principal objetivo em aplicações de sensoriamento remoto multitemporal. Sabe-se que imagens adquiridas em datas distintas tendem a ser altamente influenciadas por problemas radiométricos e de registro. Utilizando imagens de fração, obtidas a partir do modelo linear de mistura espectral (MLME), problemas radiométricos podem ser minimizados e a interpretação dos tipos de mudança na superfície terrestre é facilitada, pois as frações têm um significado físico direto. Além disso, interpretações ao nível de subpixel são possíveis. Esta tese propõe três algoritmos – rígido, suave e fuzzy – para a detecção de mudanças entre um par de imagens de fração, gerando mapas de mudança como produtos finais. As propostas requerem a suposição de normalidade multivariada para as diferenças de fração e necessitam de pouca intervenção por parte do analista. A proposta rígida cria mapas de mudança binários seguindo a mesma metodologia de um teste de hipóteses, baseando-se no fato de que os contornos de densidade constante na distribuição normal multivariada são definidos por valores da distribuição qui-quadrado, de acordo com a escolha do nível de confiança. O classificador suave permite gerar estimativas da probabilidade do pixel pertencer à classe de mudança, a partir de um modelo de regressão logística. Essas probabilidades são usadas para criar um mapa de probabilidades de mudança. A abordagem fuzzy é aquela que melhor se adapta ao conceito de pixel mistura, visto que as mudanças no uso e cobertura do solo podem ocorrer em nível de subpixel. Com base nisso, mapas dos graus de pertinência à classe de mudança foram criados. Outras ferramentas matemáticas e estatísticas foram utilizadas, tais como operações morfológicas, curvas ROC e algoritmos de clustering. As três propostas foram testadas utilizando-se imagens sintéticas e reais (Landsat-TM) e avaliadas qualitativa e quantitativamente. Os resultados indicam a viabilidade da utilização de imagens de fração em estudos de detecção de mudanças por meio dos algoritmos propostos. === Land cover change detection is a major goal in multitemporal remote sensing applications. It is well known that images acquired on different dates tend to be highly influenced by radiometric differences and registration problems. Using fraction images, obtained from the linear model of spectral mixing (LMSM), radiometric problems can be minimized and the interpretation of changes in land cover is facilitated because the fractions have a physical meaning. Furthermore, interpretations at the subpixel level are possible. This thesis presents three algorithms – hard, soft and fuzzy – for detecting changes between a pair of fraction images. The algorithms require multivariate normality for the differences among fractions and very little intervention by the analyst. The hard algorithm creates binary change maps following the same methodology of hypothesis testing, based on the fact that the contours of constant density are defined by chi-square values, according to the choice of the probability level. The soft one allows for the generation of estimates of the probability of each pixel belonging to the change class by using a logistic regression model. These probabilities are used to create a map of change probabilities. The fuzzy approach is the one that best fits the concept behind the fraction images because the changes in land cover can occurr at a subpixel level. Based on these algorithms, maps of membership degrees were created. Other mathematical and statistical techniques were also used, such as morphological operations, ROC curves and a clustering algorithm. The algorithms were tested using synthetic and real images (Landsat-TM) and the results were analyzed qualitatively and quantitatively. The results indicate that fraction images can be used in change detection studies by using the proposed algorithms.
author2 Saldanha, Dejanira Luderitz
author_facet Saldanha, Dejanira Luderitz
Bittencourt, Helio Radke
author Bittencourt, Helio Radke
author_sort Bittencourt, Helio Radke
title Detecção de mudanças a partir de imagens de fração
title_short Detecção de mudanças a partir de imagens de fração
title_full Detecção de mudanças a partir de imagens de fração
title_fullStr Detecção de mudanças a partir de imagens de fração
title_full_unstemmed Detecção de mudanças a partir de imagens de fração
title_sort detecção de mudanças a partir de imagens de fração
publishDate 2012
url http://hdl.handle.net/10183/36053
work_keys_str_mv AT bittencourthelioradke deteccaodemudancasapartirdeimagensdefracao
_version_ 1718940426074849280
spelling ndltd-IBICT-oai-www.lume.ufrgs.br-10183-360532019-01-22T01:41:50Z Detecção de mudanças a partir de imagens de fração Bittencourt, Helio Radke Saldanha, Dejanira Luderitz Sensoriamento remoto Geografia física Imagens digitais Change detection Fraction images Digital image processing Hard classification Soft classification Fuzzy classification A detecção de mudanças na superfície terrestre é o principal objetivo em aplicações de sensoriamento remoto multitemporal. Sabe-se que imagens adquiridas em datas distintas tendem a ser altamente influenciadas por problemas radiométricos e de registro. Utilizando imagens de fração, obtidas a partir do modelo linear de mistura espectral (MLME), problemas radiométricos podem ser minimizados e a interpretação dos tipos de mudança na superfície terrestre é facilitada, pois as frações têm um significado físico direto. Além disso, interpretações ao nível de subpixel são possíveis. Esta tese propõe três algoritmos – rígido, suave e fuzzy – para a detecção de mudanças entre um par de imagens de fração, gerando mapas de mudança como produtos finais. As propostas requerem a suposição de normalidade multivariada para as diferenças de fração e necessitam de pouca intervenção por parte do analista. A proposta rígida cria mapas de mudança binários seguindo a mesma metodologia de um teste de hipóteses, baseando-se no fato de que os contornos de densidade constante na distribuição normal multivariada são definidos por valores da distribuição qui-quadrado, de acordo com a escolha do nível de confiança. O classificador suave permite gerar estimativas da probabilidade do pixel pertencer à classe de mudança, a partir de um modelo de regressão logística. Essas probabilidades são usadas para criar um mapa de probabilidades de mudança. A abordagem fuzzy é aquela que melhor se adapta ao conceito de pixel mistura, visto que as mudanças no uso e cobertura do solo podem ocorrer em nível de subpixel. Com base nisso, mapas dos graus de pertinência à classe de mudança foram criados. Outras ferramentas matemáticas e estatísticas foram utilizadas, tais como operações morfológicas, curvas ROC e algoritmos de clustering. As três propostas foram testadas utilizando-se imagens sintéticas e reais (Landsat-TM) e avaliadas qualitativa e quantitativamente. Os resultados indicam a viabilidade da utilização de imagens de fração em estudos de detecção de mudanças por meio dos algoritmos propostos. Land cover change detection is a major goal in multitemporal remote sensing applications. It is well known that images acquired on different dates tend to be highly influenced by radiometric differences and registration problems. Using fraction images, obtained from the linear model of spectral mixing (LMSM), radiometric problems can be minimized and the interpretation of changes in land cover is facilitated because the fractions have a physical meaning. Furthermore, interpretations at the subpixel level are possible. This thesis presents three algorithms – hard, soft and fuzzy – for detecting changes between a pair of fraction images. The algorithms require multivariate normality for the differences among fractions and very little intervention by the analyst. The hard algorithm creates binary change maps following the same methodology of hypothesis testing, based on the fact that the contours of constant density are defined by chi-square values, according to the choice of the probability level. The soft one allows for the generation of estimates of the probability of each pixel belonging to the change class by using a logistic regression model. These probabilities are used to create a map of change probabilities. The fuzzy approach is the one that best fits the concept behind the fraction images because the changes in land cover can occurr at a subpixel level. Based on these algorithms, maps of membership degrees were created. Other mathematical and statistical techniques were also used, such as morphological operations, ROC curves and a clustering algorithm. The algorithms were tested using synthetic and real images (Landsat-TM) and the results were analyzed qualitatively and quantitatively. The results indicate that fraction images can be used in change detection studies by using the proposed algorithms. 2012-01-06T01:19:55Z 2011 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10183/36053 000815617 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS