Soluções unificadas para modelos com freqüência de colisão variável da dinâmica de gases rarefeitos
Neste trabalho, uma versão analítica do método de ordenadas discretas é usada para desenvolver soluções para alguns problemas da dinÂmica de gases rarefeitos, baseado em um modelo com freqüência de colisão variável (modelo CLF) da equação de Boltzmann linearizada. Em particular, resultados numéricos...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
2007
|
Subjects: | |
Online Access: | http://hdl.handle.net/10183/3037 |
Summary: | Neste trabalho, uma versão analítica do método de ordenadas discretas é usada para desenvolver soluções para alguns problemas da dinÂmica de gases rarefeitos, baseado em um modelo com freqüência de colisão variável (modelo CLF) da equação de Boltzmann linearizada. Em particular, resultados numéricos obtidos para os problemas de salto de temperatura, fluxo de Poiseuille, fluxo de Couette, Kramers, creep-térmico e deslizamento térmico são apresentados e discutidos. |
---|