Investigação computacional das doenças priônicas : influência dos campos de força e dos estados de protonação na conversão estrutural da proteína príon celular

Príons são proteínas que causam um grupo de doenças neurodegenerativas invariavelmente fatais, sendo uma das mais conhecidas a encefalopatia espongiforme bovina (ou doença da vaca louca). A proteína príon celular (PrPc), rica em estrutura α-helicoidal, sofre uma mudança na sua estrutura secundária p...

Full description

Bibliographic Details
Main Author: Thompson, Helen Nathalia
Other Authors: Stassen, Hubert Karl
Format: Others
Language:Portuguese
Published: 2018
Subjects:
Ph
Online Access:http://hdl.handle.net/10183/184574
Description
Summary:Príons são proteínas que causam um grupo de doenças neurodegenerativas invariavelmente fatais, sendo uma das mais conhecidas a encefalopatia espongiforme bovina (ou doença da vaca louca). A proteína príon celular (PrPc), rica em estrutura α-helicoidal, sofre uma mudança na sua estrutura secundária produzindo a proteína patológica (PrPSc; o príon) na qual prevalecem folhas-β. Devido à falta de dados estruturais de alta resolução dos príons, simulações de dinâmica molecular (DM) podem ser particularmente úteis para estudar o redobramento de PrP. Estudos experimentais e computacionais, descritos na literatura, indicam que a utilização de pH ácido é capaz de criar certa instabilidade estrutural, produzindo um ganho de estrutura-β na região N-terminal antes desestruturada. Este trabalho se propõe a investigar computacionalmente as mudanças estruturais na proteína príon celular do hamster Sírio induzidas por alteração de pH. Para isso, foi avaliada a influência de diferentes campos de força (GROMOS96 53a6, GROMOS96 43a1, AMBER99SB, AMBER99SB-ILDN, CHARMM27 e OPLS) simulados para as condições de pH neutro e ácido. A partir das análises, observou-se uma forte dependência dos resultados com o campo de força empregado. Além disso, somente os campos de força GROMOS96 53a6 e AMBER99SB demonstraram tendência à expansão do núcleo de folhas-β na região N-terminal da proteína simulada sob pH ácido e conseguiram representar adequadamente a condição neutra. As estruturas correspondentes a esses campos de força em pH ácido, foram, então, utilizadas como ponto de partida para novas simulações de DM em pH neutro (pH 7,4). Essa situação de retorno ao pH neutro ocorre quando o príon sai do compartimento endossomal (submetido a pH ácido) e retorna à superfície externa celular (onde estaria submetida novamente a pH neutro). Os resultados desse estudo de retorno ao pH neutro apontaram para a não reversibilidade de PrPSc, com a manutenção da cauda N-terminal voltada para a extremidade N-terminal da α-hélice HB. === Prions are proteins that cause a group of invariably fatal neurodegenerative diseases, one of the most known being bovine spongiform encephalopathy (or mad cow disease). The cellular prion protein (PrPC), rich in α-helical structure, undergoes a change in its secondary structure producing the pathological protein (PrPSc; the prion) in which β-sheet prevails. Due to the lack of high resolution structural data of the prions, molecular dynamics simulations (MD) may be particularly useful to study the refolding of PrP. Experimental and computational studies, described in the literature, indicate that the use of acidic pH is capable to create some structural instability, producing a gain of β-structure in the previously unstructured N-terminal region. This work proposes to investigate computationally the structural changes in the cellular prion protein of the Syrian hamster induced by pH change. For this, the influence of different force fields (GROMOS96 53a6, GROMOS96 43a1, AMBER99SB, AMBER99SB-ILDN, CHARMM27 and OPLS) were evaluated for neutral and acid pH conditions. From the analysis, a strong dependence of the results with the force field was observed. In addition, only the GROMOS96 53a6 and AMBER99SB force fields showed a tendency to expand the β-sheet nucleus in the N-terminal region of the simulated protein under acid pH and were able to adequately represent the neutral condition. The structures corresponding to these force fields under acidic pH were then used as the starting point for new MD simulations under neutral pH. This situation of return to the neutral pH occurs when the prion leaves the endosomal compartment (submitted to acid pH) and returns to the external cellular surface (where it would be submitted again to neutral pH). The results of this neutral pH return study pointed to the non-reversibility of PrPSc, with the maintenance of the N-terminal tail facing the N-terminal end of the α-helix HB.