Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados
Considerando a importância de uma medida de alta frequência para o PIB do Rio Grande do Sul, o principal indicador de atividade econômica do estado, este trabalho foi dividido em três objetivos. O primeiro foi a estimação de uma série com frequência mensal para o PIB real do Rio Grande do Sul entre...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10183/178182 |
id |
ndltd-IBICT-oai-www.lume.ufrgs.br-10183-178182 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Estimação Produto interno bruto Ciclo econômico Rio Grande do Sul Rio Grande do Sul’s GDP State-space models Interpolation Nowcasting Business cycles of Rio Grande do Sul |
spellingShingle |
Estimação Produto interno bruto Ciclo econômico Rio Grande do Sul Rio Grande do Sul’s GDP State-space models Interpolation Nowcasting Business cycles of Rio Grande do Sul Baggio, Giovani Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
description |
Considerando a importância de uma medida de alta frequência para o PIB do Rio Grande do Sul, o principal indicador de atividade econômica do estado, este trabalho foi dividido em três objetivos. O primeiro foi a estimação de uma série com frequência mensal para o PIB real do Rio Grande do Sul entre janeiro de 2002 e março de 2017, dado que o mesmo só é contabilizado em frequência trimestral. Para tanto, foi utilizado um modelo em espaço de estados que permite a estimação e nowcast do PIB mensal, utilizando séries coincidentes como fonte de informação para a interpolação dos dados trimestrais do PIB, em linha com Bernanke, Gertler e Watson (1997), Mönch e Uhlig (2005) e Issler e Notini (2016). O segundo objetivo foi comparar a série estimada com um indicador de atividade calculado pelo Banco Central do Brasil para o estado, o Índice de Atividade Econômica Regional (IBCR-RS), tanto em termos metodológicos como na capacidade em antecipar as variações do PIB trimestral antes de sua divulgação (nowcasting). O terceiro objetivo foi estabelecer a cronologia dos ciclos de expansão e recessão da economia gaúcha com o uso do algoritmo de Bry e Boschan (1971). Após a etapa de seleção das séries coincidentes e da estimação de diversos modelos de interpolação, foi escolhido para gerar a série mensal do PIB o modelo que utiliza somente a produção industrial como variável auxiliar, tendo este apresentado o melhor ajuste. A comparação do PIB mensal interpolado com o IBCR-RS mostrou que, além da vantagem computacional a favor do método proposto neste trabalho, a imposição da disciplina de que as variações do PIB mensal estimado devem ser exatamente iguais às do PIB trimestral faz com que a dinâmica de curto e longo prazo das variáveis sejam idênticas, o que não ocorre com o IBCR-RS. A cronologia dos pontos de inflexão da atividade econômica apontou três períodos recessivos na economia gaúcha desde janeiro de 2002: jun/2003 a abr/2005 (23 meses e queda acumulada de 8,79%); abr/2011 a abr/2012 (13 meses e queda acumulada de 9,47%); e jun/2013 a nov/2016 (42 meses e queda acumulada de 10,41%), sendo o encerramento deste último apontado somente com a inclusão dos resultados estimados pelo modelo para o segundo trimestre de 2017. Finalmente, os resultados do exercício de nowcasting do PIB mostraram desempenho superior do método proposto frente ao IBCR-RS em termos de antecipação do resultado do PIB de um trimestre a frente, tomando como base as medidas de MAE (erro absoluto médio, em inglês) e MSE (erro quadrático médio, em inglês), comumente usadas nesse intuito. === Giving the importance of a high frequency measure for Rio Grande do Sul’s GDP, the main indicator of economic activity of the state, this work was divided into three objectives. The first one was the estimation of monthly frequency series for Rio Grande do Sul’s real GDP between January/2002 and March/2017, since it is only accounted in quarterly basis. Therefore, we used a State-Space model that enables to estimate and nowcast the monthly GDP, using coincident series as a source of information for the interpolation of quarterly GDP data, in line with Bernanke, Gertler e Watson (1997), Mönch e Uhlig (2005) and Issler e Notini (2016). The second objective was to compare the estimated series with an activity indicator calculated by the Central Bank of Brazil for the state, the Regional Economic Activity Index (IBCR-RS), both in methodological terms and in the capability to anticipate the quarterly GDP release (nowcasting). The third objective was to establish the chronology of the cycles of expansion and recession of the economy of Rio Grande do Sul using the algorithm of Bry e Boschan (1971). After the selection of the coincident series and the estimation of several interpolation models, the chosen model to generate the monthly GDP series uses only the industrial production as an auxiliary variable, and this one presented the best fit. The comparison of the monthly GDP interpolated with the IBCR-RS showed that, in addition to the computational advantage in favor of the method proposed in this work, the imposition of the discipline that the estimated monthly GDP changes must be exactly the same as the quarterly GDP makes the short-term and long-term dynamics of the variables are identical, which is not the case with IBCR-RS. The chronology of the turning points of the economic activity pointed to three recessive periods in the economy of Rio Grande do Sul since January 2002: June/2003 to April/2005 (23 months and accumulated drop of 8.79%); April/2011 to April/2012 (13 months and accumulated fall of 9.47%); and June/2013 to November/2016 (42 months and 10.41% accumulated decrease), with the latter one closing only with the inclusion of the results estimated by the model for the second quarter of 2017. Finally, results for GDP’s nowcasting showed superior performance of the proposed method compared to the IBCR-RS in terms of anticipating quarter-to-quarter GDP results, based on the measures of MAE (absolute mean error) and MSE (mean square error), commonly used for this purpose. |
author2 |
Portugal, Marcelo Savino |
author_facet |
Portugal, Marcelo Savino Baggio, Giovani |
author |
Baggio, Giovani |
author_sort |
Baggio, Giovani |
title |
Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
title_short |
Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
title_full |
Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
title_fullStr |
Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
title_full_unstemmed |
Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados |
title_sort |
estimando o pib mensal do rio grande do sul : uma abordagem de espaço de estados |
publishDate |
2018 |
url |
http://hdl.handle.net/10183/178182 |
work_keys_str_mv |
AT baggiogiovani estimandoopibmensaldoriograndedosulumaabordagemdeespacodeestados |
_version_ |
1718947048891351040 |
spelling |
ndltd-IBICT-oai-www.lume.ufrgs.br-10183-1781822019-01-22T02:09:47Z Estimando o PIB mensal do Rio Grande do Sul : uma abordagem de espaço de estados Baggio, Giovani Portugal, Marcelo Savino Estimação Produto interno bruto Ciclo econômico Rio Grande do Sul Rio Grande do Sul’s GDP State-space models Interpolation Nowcasting Business cycles of Rio Grande do Sul Considerando a importância de uma medida de alta frequência para o PIB do Rio Grande do Sul, o principal indicador de atividade econômica do estado, este trabalho foi dividido em três objetivos. O primeiro foi a estimação de uma série com frequência mensal para o PIB real do Rio Grande do Sul entre janeiro de 2002 e março de 2017, dado que o mesmo só é contabilizado em frequência trimestral. Para tanto, foi utilizado um modelo em espaço de estados que permite a estimação e nowcast do PIB mensal, utilizando séries coincidentes como fonte de informação para a interpolação dos dados trimestrais do PIB, em linha com Bernanke, Gertler e Watson (1997), Mönch e Uhlig (2005) e Issler e Notini (2016). O segundo objetivo foi comparar a série estimada com um indicador de atividade calculado pelo Banco Central do Brasil para o estado, o Índice de Atividade Econômica Regional (IBCR-RS), tanto em termos metodológicos como na capacidade em antecipar as variações do PIB trimestral antes de sua divulgação (nowcasting). O terceiro objetivo foi estabelecer a cronologia dos ciclos de expansão e recessão da economia gaúcha com o uso do algoritmo de Bry e Boschan (1971). Após a etapa de seleção das séries coincidentes e da estimação de diversos modelos de interpolação, foi escolhido para gerar a série mensal do PIB o modelo que utiliza somente a produção industrial como variável auxiliar, tendo este apresentado o melhor ajuste. A comparação do PIB mensal interpolado com o IBCR-RS mostrou que, além da vantagem computacional a favor do método proposto neste trabalho, a imposição da disciplina de que as variações do PIB mensal estimado devem ser exatamente iguais às do PIB trimestral faz com que a dinâmica de curto e longo prazo das variáveis sejam idênticas, o que não ocorre com o IBCR-RS. A cronologia dos pontos de inflexão da atividade econômica apontou três períodos recessivos na economia gaúcha desde janeiro de 2002: jun/2003 a abr/2005 (23 meses e queda acumulada de 8,79%); abr/2011 a abr/2012 (13 meses e queda acumulada de 9,47%); e jun/2013 a nov/2016 (42 meses e queda acumulada de 10,41%), sendo o encerramento deste último apontado somente com a inclusão dos resultados estimados pelo modelo para o segundo trimestre de 2017. Finalmente, os resultados do exercício de nowcasting do PIB mostraram desempenho superior do método proposto frente ao IBCR-RS em termos de antecipação do resultado do PIB de um trimestre a frente, tomando como base as medidas de MAE (erro absoluto médio, em inglês) e MSE (erro quadrático médio, em inglês), comumente usadas nesse intuito. Giving the importance of a high frequency measure for Rio Grande do Sul’s GDP, the main indicator of economic activity of the state, this work was divided into three objectives. The first one was the estimation of monthly frequency series for Rio Grande do Sul’s real GDP between January/2002 and March/2017, since it is only accounted in quarterly basis. Therefore, we used a State-Space model that enables to estimate and nowcast the monthly GDP, using coincident series as a source of information for the interpolation of quarterly GDP data, in line with Bernanke, Gertler e Watson (1997), Mönch e Uhlig (2005) and Issler e Notini (2016). The second objective was to compare the estimated series with an activity indicator calculated by the Central Bank of Brazil for the state, the Regional Economic Activity Index (IBCR-RS), both in methodological terms and in the capability to anticipate the quarterly GDP release (nowcasting). The third objective was to establish the chronology of the cycles of expansion and recession of the economy of Rio Grande do Sul using the algorithm of Bry e Boschan (1971). After the selection of the coincident series and the estimation of several interpolation models, the chosen model to generate the monthly GDP series uses only the industrial production as an auxiliary variable, and this one presented the best fit. The comparison of the monthly GDP interpolated with the IBCR-RS showed that, in addition to the computational advantage in favor of the method proposed in this work, the imposition of the discipline that the estimated monthly GDP changes must be exactly the same as the quarterly GDP makes the short-term and long-term dynamics of the variables are identical, which is not the case with IBCR-RS. The chronology of the turning points of the economic activity pointed to three recessive periods in the economy of Rio Grande do Sul since January 2002: June/2003 to April/2005 (23 months and accumulated drop of 8.79%); April/2011 to April/2012 (13 months and accumulated fall of 9.47%); and June/2013 to November/2016 (42 months and 10.41% accumulated decrease), with the latter one closing only with the inclusion of the results estimated by the model for the second quarter of 2017. Finally, results for GDP’s nowcasting showed superior performance of the proposed method compared to the IBCR-RS in terms of anticipating quarter-to-quarter GDP results, based on the measures of MAE (absolute mean error) and MSE (mean square error), commonly used for this purpose. 2018-05-12T03:23:43Z 2017 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/178182 001063951 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS |