Aplicação e cálculo da derivada de sinais de processos industriais

Metodologias para processamento de sinais têm sido amplamente pesquisadas com o objetivo de se extrair informação útil a partir de dados de processo. Nesta categoria incluem-se os filtros digitais, os quais atenuam os ruídos ou erros aleatórios, componentes de alta freqüência do sinal. Técnicas de a...

Full description

Bibliographic Details
Main Author: Caumo, Letícia
Other Authors: Trierweiler, Jorge Otávio
Format: Others
Language:Portuguese
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10183/12558
id ndltd-IBICT-oai-www.lume.ufrgs.br-10183-12558
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Processos químicos industriais
Processamento de sinais
spellingShingle Processos químicos industriais
Processamento de sinais
Caumo, Letícia
Aplicação e cálculo da derivada de sinais de processos industriais
description Metodologias para processamento de sinais têm sido amplamente pesquisadas com o objetivo de se extrair informação útil a partir de dados de processo. Nesta categoria incluem-se os filtros digitais, os quais atenuam os ruídos ou erros aleatórios, componentes de alta freqüência do sinal. Técnicas de atenuação de ruído como aproximações polinomiais, filtros de Fourier e Ondaletas recebem destaque dentre as técnicas de filtragem. Os filtros das Ondaletas, por exemplo, baseiam-se nos componentes de freqüência de um sinal, realizando a transformada deste sinal de modo a eliminar as freqüências acima de um limite especificado. Este sinal suavizado (tendência), de ruído atenuado, também pode ser processado de modo a obter a sua derivada. A diferenciação numérica de sinais digitais tem muitas aplicações em processamento de sinais analíticos, devido às suas propriedades, e em várias técnicas de engenharia. Um sinal suavizado desempenha papel importante na identificação de estados estacionários por exemplo, que encontra grande aplicação em análise de processos, otimização, identificação de modelos e reconciliação de dados. Como estas aplicações requerem dados sob condição estacionária, ou muito próxima dela, um método eficiente de detecção de estacionários se faz necessário. A derivada de um sinal ruidoso fica mascarada pelo próprio ruído e não apresenta de forma clara os pontos de inflexão desejados para a análise do sinal. Faz-se necessário, portanto, tratar o sinal com um filtro de modo a reduzir ou eliminar o ruído antes de processá-lo ou, então, obter a tendência que este sinal apresenta. Neste trabalho busca-se comparar algumas metodologias comumente utilizadas para filtragem de sinais de processos e obtenção de tendências, e analisa-se a aplicação de uma destas metodologias para análise e identificação de estados estacionários. Uma metodologia multi-variável simples e eficiente baseada em PCA é proposta, tomando como referência o método proposto por JIANG et al. (2003), que determina um índice de estado estacionário pontual. Para validação do método, estudaram-se alguns sistemas industriais e os resultados obtidos são apresentados, mostrando-se satisfatórios. === Methodologies for signal processing are being widely used to extract useful information from process data. In this category are included the digital filters, which atenuate noise or randomic errors (i.e., high frequency components of the signal). Techniques to atenuate noise as polinomial approximation, Fourier filters and Wavelets are commonly used. The Wavelet filters, for example, are based on the high frequency components of the signal, performing the wavelet transform on it to eliminate de frequencies above a specified level. This smooth signal, with less noise (trend), can be also processed to obtain its derivative. Numerical diferentiation of digital signals has many applications in analytic signal processing, due to its properties, and in several engineering techniques. A smooth signal plays an important role in steady-state identification, for example, in applications for process analysis, process optimization, model identification and data reconciliation. As these applications require data under steady-state condition, or very close to it, an efficient method for steady-state detection is necessary. The derivative of a noisy signal is hidden by the noise itself and does not show clearly the inflexion points desired for the signal analysis. Thus it is necessary to filter the signal to reduce or even eliminate the noise before processing it. In this work, some commonly used filter techniques are used and compared, and the application of one of them to steady-state detection is analised. An easy and efficient multivariable metodology based on PCA is proposed, according to the method presented by JIANG et al. (2003), which determines a pointwise steady-state index. To validate the method, some industrial systems were studied and the obtained results are presented, showing that they are satisfatory.
author2 Trierweiler, Jorge Otávio
author_facet Trierweiler, Jorge Otávio
Caumo, Letícia
author Caumo, Letícia
author_sort Caumo, Letícia
title Aplicação e cálculo da derivada de sinais de processos industriais
title_short Aplicação e cálculo da derivada de sinais de processos industriais
title_full Aplicação e cálculo da derivada de sinais de processos industriais
title_fullStr Aplicação e cálculo da derivada de sinais de processos industriais
title_full_unstemmed Aplicação e cálculo da derivada de sinais de processos industriais
title_sort aplicação e cálculo da derivada de sinais de processos industriais
publishDate 2008
url http://hdl.handle.net/10183/12558
work_keys_str_mv AT caumoleticia aplicacaoecalculodaderivadadesinaisdeprocessosindustriais
_version_ 1718937109520187392
spelling ndltd-IBICT-oai-www.lume.ufrgs.br-10183-125582019-01-22T01:28:52Z Aplicação e cálculo da derivada de sinais de processos industriais Caumo, Letícia Trierweiler, Jorge Otávio Processos químicos industriais Processamento de sinais Metodologias para processamento de sinais têm sido amplamente pesquisadas com o objetivo de se extrair informação útil a partir de dados de processo. Nesta categoria incluem-se os filtros digitais, os quais atenuam os ruídos ou erros aleatórios, componentes de alta freqüência do sinal. Técnicas de atenuação de ruído como aproximações polinomiais, filtros de Fourier e Ondaletas recebem destaque dentre as técnicas de filtragem. Os filtros das Ondaletas, por exemplo, baseiam-se nos componentes de freqüência de um sinal, realizando a transformada deste sinal de modo a eliminar as freqüências acima de um limite especificado. Este sinal suavizado (tendência), de ruído atenuado, também pode ser processado de modo a obter a sua derivada. A diferenciação numérica de sinais digitais tem muitas aplicações em processamento de sinais analíticos, devido às suas propriedades, e em várias técnicas de engenharia. Um sinal suavizado desempenha papel importante na identificação de estados estacionários por exemplo, que encontra grande aplicação em análise de processos, otimização, identificação de modelos e reconciliação de dados. Como estas aplicações requerem dados sob condição estacionária, ou muito próxima dela, um método eficiente de detecção de estacionários se faz necessário. A derivada de um sinal ruidoso fica mascarada pelo próprio ruído e não apresenta de forma clara os pontos de inflexão desejados para a análise do sinal. Faz-se necessário, portanto, tratar o sinal com um filtro de modo a reduzir ou eliminar o ruído antes de processá-lo ou, então, obter a tendência que este sinal apresenta. Neste trabalho busca-se comparar algumas metodologias comumente utilizadas para filtragem de sinais de processos e obtenção de tendências, e analisa-se a aplicação de uma destas metodologias para análise e identificação de estados estacionários. Uma metodologia multi-variável simples e eficiente baseada em PCA é proposta, tomando como referência o método proposto por JIANG et al. (2003), que determina um índice de estado estacionário pontual. Para validação do método, estudaram-se alguns sistemas industriais e os resultados obtidos são apresentados, mostrando-se satisfatórios. Methodologies for signal processing are being widely used to extract useful information from process data. In this category are included the digital filters, which atenuate noise or randomic errors (i.e., high frequency components of the signal). Techniques to atenuate noise as polinomial approximation, Fourier filters and Wavelets are commonly used. The Wavelet filters, for example, are based on the high frequency components of the signal, performing the wavelet transform on it to eliminate de frequencies above a specified level. This smooth signal, with less noise (trend), can be also processed to obtain its derivative. Numerical diferentiation of digital signals has many applications in analytic signal processing, due to its properties, and in several engineering techniques. A smooth signal plays an important role in steady-state identification, for example, in applications for process analysis, process optimization, model identification and data reconciliation. As these applications require data under steady-state condition, or very close to it, an efficient method for steady-state detection is necessary. The derivative of a noisy signal is hidden by the noise itself and does not show clearly the inflexion points desired for the signal analysis. Thus it is necessary to filter the signal to reduce or even eliminate the noise before processing it. In this work, some commonly used filter techniques are used and compared, and the application of one of them to steady-state detection is analised. An easy and efficient multivariable metodology based on PCA is proposed, according to the method presented by JIANG et al. (2003), which determines a pointwise steady-state index. To validate the method, some industrial systems were studied and the obtained results are presented, showing that they are satisfatory. 2008-04-17T04:13:06Z 2006 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/12558 000630091 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS