Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera

Sistemas de previsão de tempo requerem um modelo para sua evolução temporal e uma estimativa do estado atual do sistema. A previsão numérica de tempo (PNT) integra as equações da dinâmica da atmosfera com os processos físicos e pode prever o estado futuro da atmosfera. Assimilação de dados provê a e...

Full description

Bibliographic Details
Main Author: Rosângela Saher Corrêa Cintra
Other Authors: Haroldo Fraga de Campos Velho
Language:Portuguese
Published: Instituto Nacional de Pesquisas Espaciais 2010
Online Access:http://urlib.net/sid.inpe.br/mtc-m19/2010/09.20.14.46
id ndltd-IBICT-oai-urlib.net-sid.inpe.br-mtc-m19-2010-09.20.14.46.51-0
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
description Sistemas de previsão de tempo requerem um modelo para sua evolução temporal e uma estimativa do estado atual do sistema. A previsão numérica de tempo (PNT) integra as equações da dinâmica da atmosfera com os processos físicos e pode prever o estado futuro da atmosfera. Assimilação de dados provê a estimativa inicial da atmosfera onde combina informações de observações e de uma previsão anterior de curto prazo, produzindo uma estimativa de estado atual. Neste trabalho investigou-se a técnica de assimilação de dados com Redes Neurais Artificiais (RNA). As previsões de curto prazo são de um modelo global de equações primitivas. O modelo SPEEDY (\textit{Simplified Parameterizations, primitivE-Equation DYnamics}) é um modelo de circulação geral da atmosfera com grade em coordenadas tridimensionais. Molteni (2003) mostrou que o modelo SPEEDY tem características semelhantes aos modelos atmosféricos do estado-da-arte. Para o esquema de assimilação de dados aplicou-se uma RNA supervisionada (Perceptron de Múltiplas Camadas) para emular os resultados da técnica de Filtro de Kalman por Conjunto Transformado e Localizado (\textit{Local Transform Ensemble Kalman Filter} - LETKF). O esquena LETKF é uma aproximação do Filtro de Kalman onde um conjunto tipo Monte-Carlo de previsões de curto prazo são usadas para estimar as covariâncias do erro do modelo de previsão. O método com RNA neste trabalho pode ser descrito como um processo de assimilação, onde a rede neural após treinada obtém os resultados em função do modelo de estado SPEEDY e de observações sintéticas. A estratégia do treinamento supervisionado da RNA, a implementação das redes, do modelo e das observações são apresentadas. A ênfase principal nesta técnica é a velocidade computacional na obtenção da condição inicial do modelo de estado que acelera todo o processo de previsão numérica do tempo. Os resultados numéricos demonstrem a eficiência da técnica de assimilação de dados atmosféricos utilizando RNA, pois estes apresentam-se muito próximos aos resultados da assimilação de dados realizada com o método LETKF. As simulações demonstram a grande vantagem no uso de redes neurais: o melhor desempenho computacional. === Weather forecasting systems require a model for the time evolution and an estimate of the current state of the system. The numerical weather prediction (NWP) incorporates the equations of atmospheric dynamics with physical process and it can predict the future state of the atmosphere. Data assimilation provides such an initial estimate of the atmosphere where it combines information from observations and from a prior short-term forecast producing an current state estimate. This work investigated the approach of data assimilation with Artificial Neural Networks (ANN). The short-term predictions are from a global primitive equation model, the SPEEDY model \textit{Simplified parameterizations, primitive-Equation Dynamics}, simplified physical processes of an atmospheric general circulation with resolution in tridimensional coordinates. Molteni (2003) showed that the SPEEDY model has similar characteristics to the state-of-art atmospheric models. For the data assimilation scheme, it applied a supervised ANN Multilayer Perceptron to emulate the analysis results for \textit{Local Ensemble Transform Kalman Filter} (LETKF). LETKF is an approximation of Kalman filter, with Monte-Carlo ensemble of short-term forecasts to estimate the forecast model error covariances. The method using RNA in this work can be described as a process of data assimilation, where the ANN trained after obtaining the results, like a function of the state model SPEEDY and its synthetic observations. The strategy of ANN supervised training, the implementations of networks and the model and the observations are presented. The main emphasis of this technique is the computational speed in obtaining the initial condition for state model that accelerates the whole process of numerical weather prediction. The numerical results demonstrate the effectiveness of this ANN technique in atmospheric data assimilation because these have been very close to the results compared with LETKF data assimilation results. The simulations demonstrate the great advantage in using neural networks: the best computational performance.
author2 Haroldo Fraga de Campos Velho
author_facet Haroldo Fraga de Campos Velho
Rosângela Saher Corrêa Cintra
author Rosângela Saher Corrêa Cintra
spellingShingle Rosângela Saher Corrêa Cintra
Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
author_sort Rosângela Saher Corrêa Cintra
title Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
title_short Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
title_full Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
title_fullStr Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
title_full_unstemmed Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
title_sort assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera
publisher Instituto Nacional de Pesquisas Espaciais
publishDate 2010
url http://urlib.net/sid.inpe.br/mtc-m19/2010/09.20.14.46
work_keys_str_mv AT rosangelasahercorreacintra assimilacaodedadoscomredesneuraisartificiaisemmodelodecirculacaogeraldaatmosfera
AT rosangelasahercorreacintra dataassimilationwithartificialneuralnetworksinatmosphericgeneralcirculationmodel
_version_ 1718963121532436480
spelling ndltd-IBICT-oai-urlib.net-sid.inpe.br-mtc-m19-2010-09.20.14.46.51-02019-01-22T03:18:36Z Assimilação de dados com redes neurais artificiais em modelo de circulação geral da atmosfera Data assimilation with artificial neural networks in atmospheric general circulation model Rosângela Saher Corrêa Cintra Haroldo Fraga de Campos Velho José Demisio Simões da Silva José Antônio Aravéquia Pedro Leite da Silva Dias Aluizio Fausto Ribeiro Araujo Sistemas de previsão de tempo requerem um modelo para sua evolução temporal e uma estimativa do estado atual do sistema. A previsão numérica de tempo (PNT) integra as equações da dinâmica da atmosfera com os processos físicos e pode prever o estado futuro da atmosfera. Assimilação de dados provê a estimativa inicial da atmosfera onde combina informações de observações e de uma previsão anterior de curto prazo, produzindo uma estimativa de estado atual. Neste trabalho investigou-se a técnica de assimilação de dados com Redes Neurais Artificiais (RNA). As previsões de curto prazo são de um modelo global de equações primitivas. O modelo SPEEDY (\textit{Simplified Parameterizations, primitivE-Equation DYnamics}) é um modelo de circulação geral da atmosfera com grade em coordenadas tridimensionais. Molteni (2003) mostrou que o modelo SPEEDY tem características semelhantes aos modelos atmosféricos do estado-da-arte. Para o esquema de assimilação de dados aplicou-se uma RNA supervisionada (Perceptron de Múltiplas Camadas) para emular os resultados da técnica de Filtro de Kalman por Conjunto Transformado e Localizado (\textit{Local Transform Ensemble Kalman Filter} - LETKF). O esquena LETKF é uma aproximação do Filtro de Kalman onde um conjunto tipo Monte-Carlo de previsões de curto prazo são usadas para estimar as covariâncias do erro do modelo de previsão. O método com RNA neste trabalho pode ser descrito como um processo de assimilação, onde a rede neural após treinada obtém os resultados em função do modelo de estado SPEEDY e de observações sintéticas. A estratégia do treinamento supervisionado da RNA, a implementação das redes, do modelo e das observações são apresentadas. A ênfase principal nesta técnica é a velocidade computacional na obtenção da condição inicial do modelo de estado que acelera todo o processo de previsão numérica do tempo. Os resultados numéricos demonstrem a eficiência da técnica de assimilação de dados atmosféricos utilizando RNA, pois estes apresentam-se muito próximos aos resultados da assimilação de dados realizada com o método LETKF. As simulações demonstram a grande vantagem no uso de redes neurais: o melhor desempenho computacional. Weather forecasting systems require a model for the time evolution and an estimate of the current state of the system. The numerical weather prediction (NWP) incorporates the equations of atmospheric dynamics with physical process and it can predict the future state of the atmosphere. Data assimilation provides such an initial estimate of the atmosphere where it combines information from observations and from a prior short-term forecast producing an current state estimate. This work investigated the approach of data assimilation with Artificial Neural Networks (ANN). The short-term predictions are from a global primitive equation model, the SPEEDY model \textit{Simplified parameterizations, primitive-Equation Dynamics}, simplified physical processes of an atmospheric general circulation with resolution in tridimensional coordinates. Molteni (2003) showed that the SPEEDY model has similar characteristics to the state-of-art atmospheric models. For the data assimilation scheme, it applied a supervised ANN Multilayer Perceptron to emulate the analysis results for \textit{Local Ensemble Transform Kalman Filter} (LETKF). LETKF is an approximation of Kalman filter, with Monte-Carlo ensemble of short-term forecasts to estimate the forecast model error covariances. The method using RNA in this work can be described as a process of data assimilation, where the ANN trained after obtaining the results, like a function of the state model SPEEDY and its synthetic observations. The strategy of ANN supervised training, the implementations of networks and the model and the observations are presented. The main emphasis of this technique is the computational speed in obtaining the initial condition for state model that accelerates the whole process of numerical weather prediction. The numerical results demonstrate the effectiveness of this ANN technique in atmospheric data assimilation because these have been very close to the results compared with LETKF data assimilation results. The simulations demonstrate the great advantage in using neural networks: the best computational performance. 2010-09-27 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://urlib.net/sid.inpe.br/mtc-m19/2010/09.20.14.46 por info:eu-repo/semantics/openAccess Instituto Nacional de Pesquisas Espaciais Programa de Pós-Graduação do INPE em Computação Aplicada INPE BR reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais instacron:INPE