Diferenciabilidade em espaços de Hilbert de reprodução sobre a esfera

Um espaço de Hilbert de reprodução (EHR) é um espaço de Hilbert de funções construído de maneira específica e única a partir de um núcleo positivo definido. As funções do EHR tem a seguinte peculiaridade: seus valores podem ser reproduzidos através de uma operação elementar envolvendo a própria...

Full description

Bibliographic Details
Main Author: Thaís Jordão
Other Authors: Valdir Antonio Menegatto
Language:Portuguese
Published: Universidade de São Paulo 2012
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29032012-103159/
Description
Summary:Um espaço de Hilbert de reprodução (EHR) é um espaço de Hilbert de funções construído de maneira específica e única a partir de um núcleo positivo definido. As funções do EHR tem a seguinte peculiaridade: seus valores podem ser reproduzidos através de uma operação elementar envolvendo a própria função, o núcleo gerador e o produto interno do espaço. Neste trabalho, consideramos EHR gerados por núcleos positivos definidos sobre a esfera unitária m-dimensional usual. Analisamos quais propriedades são herdadas pelos elementos do espaço, quando o núcleo gerador possui alguma hipótese de diferenciabilidade. A análise é elaborada em duas frentes: com a noção de diferenciabilidade usual sobre a esfera e com uma noção de diferenciabilidade definida por uma operação multiplicativa genérica. Esta última inclui como caso particular as derivadas fracionárias e a derivada forte de Laplace-Beltrami. Em cada um dos casos consideramos ainda propriedades específicas do mergulho do EHR em espaços de funções suaves definidos pela diferenciabilidade utilizada === A reproducing kernel Hilbert space (EHR) is a Hilbert space of functions constructed in a unique manner from a fixed positive definite generating kernel. The values of a function in a reproducing kernel Hilbert space can be reproduced through an elementary operation involving the function itself, the generating kernel and the inner product of the space. In this work, we consider reproducing kernel Hilbert spaces generated by a positive definite kernel on the usual m-dimensional sphere. The main goal is to analyze differentiability properties inherited by the functions in the space when the generating kernel carries a differentiability assumption. That is done in two different cases: using the usual notion of differentiability on the sphere and using another one defined through multiplicative operators. The second case includes the Laplace-Beltrami derivative and fractional derivatives as well. In both cases we consider specific properties of the embeddings of the reproducing kernel Hilbert space into spaces of smooth functions induced by notion of differentiability used