Análise dinâmica não linear de estruturas abatidas.
As estruturas, particularmente na engenharia civil, podem apresentar ruína quando atingem sua capacidade resistente ou quando perdem sua estabilidade, sendo, portanto atribuição básica do engenheiro de estruturas o estudo de ambas as situações. A instabilidade de uma estrutura pode surgir de doi...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2017
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/3/3144/tde-27112017-143431/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-27112017-143431 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Dinâmica das estruturas
Estabilidade estrutural Structural dynamics Structural stability |
spellingShingle |
Dinâmica das estruturas
Estabilidade estrutural Structural dynamics Structural stability Fabio Condado Barbosa Análise dinâmica não linear de estruturas abatidas. |
description |
As estruturas, particularmente na engenharia civil, podem apresentar ruína quando atingem sua capacidade resistente ou quando perdem sua estabilidade, sendo, portanto atribuição básica do engenheiro de estruturas o estudo de ambas as situações. A instabilidade de uma estrutura pode surgir de dois modos, a saber: por ocorrência de uma bifurcação de equilíbrio ou por ocorrência de um ponto limite, também conhecido por snap-through, onde o aumento do carregamento provoca uma diminuição da rigidez da estrutura, até que esta se anula no ponto limite (REIS; CAMOTIM, 2012). Estruturas como arcos, treliças e calotas esféricas abatidas, presentes em grandes coberturas, são tipos de estruturas que podem apresentar esta instabilidade, em que há a passagem dinâmica da estrutura para uma configuração de equilíbrio afastada e estável, saltando para essa configuração pós-crítica envolvendo grandes deslocamentos e inversão da curvatura. Se, no entanto, o carregamento é dinâmico, como, por exemplo, harmônico, a resposta do sistema adquire uma grande riqueza de possíveis comportamentos, em função da amplitude e frequência desse carregamento. As respostas podem resultar vibrações periódicas de vários períodos diferentes, quase periódicas, caóticas etc. Este trabalho tem como objetivo fazer um estudo da estabilidade estática e dinâmica do problema da treliça simples de duas barras (treliça de Von Mises) e do arco abatido senoidal, de comportamento elástico linear, com o estabelecimento das equações de equilíbrio na configuração deformada, i.e., levando em conta a não linearidade geométrica. A avaliação da resposta, bem como a caracterização de sua estabilidade, se dará pela apresentação das cargas críticas de instabilidade do sistema perfeito, exibição do comportamento de pós-instabilidade e, com a integração numérica do modelo matemático, o estudo geométrico dado pelos planos de fase, mapas de Poincaré, diagramas de bifurcação e fronteira de estabilidade.
===
Structures, particularly in civil engineering, can ruin when they reach their strength capacity or when they lose their stability. So, it is the basic assignment of the structural engineer to study both situations. The instability of a structure can arise in two ways, namely: by the occurrence of bifurcation of equilibrium or by the occurrence of a snap-through, where an increase of the loading causes a decrease in structure stiffness, until the stiffness is annulled in the limit point (REIS, CAMOTIM, 2012). Structures such as arches, trusses and domes, present in large roofs, are types of structures that may present this kind of instability, in which there is the dynamic passage of the structure to a far away stable equilibrium configuration, jumping to this post-critical configuration involving large displacements and reversal of the curvature. If, however, the load is dynamic, such as harmonic, the response of the system acquires a great wealth of possible behaviors, depending on the amplitude and frequency of this loading. The responses may result in periodic vibrations of several different periods, almost periodic, chaotic, etc. This work intends to study the static and the dynamic stability of the Von Mises truss and the shallow arc of linear elastic behavior, with the establishment of the equilibrium equations in the deformed configuration, i.e., taking into account the geometric non-linearity. The evaluation of the response, as well as the characterization of its stability, will be done by numerical integration of the mathematical model and geometric study of the phase planes, Poincaré maps, bifurcation diagrams and stability border.
|
author2 |
Reyolando Manoel Lopes Rebello da Fonseca Brasil |
author_facet |
Reyolando Manoel Lopes Rebello da Fonseca Brasil Fabio Condado Barbosa |
author |
Fabio Condado Barbosa |
author_sort |
Fabio Condado Barbosa |
title |
Análise dinâmica não linear de estruturas abatidas.
|
title_short |
Análise dinâmica não linear de estruturas abatidas.
|
title_full |
Análise dinâmica não linear de estruturas abatidas.
|
title_fullStr |
Análise dinâmica não linear de estruturas abatidas.
|
title_full_unstemmed |
Análise dinâmica não linear de estruturas abatidas.
|
title_sort |
análise dinâmica não linear de estruturas abatidas. |
publisher |
Universidade de São Paulo |
publishDate |
2017 |
url |
http://www.teses.usp.br/teses/disponiveis/3/3144/tde-27112017-143431/ |
work_keys_str_mv |
AT fabiocondadobarbosa analisedinamicanaolineardeestruturasabatidas AT fabiocondadobarbosa nonlineardynamicanalysisofshallowstructures |
_version_ |
1718904947505889280 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-27112017-1434312019-01-21T23:18:15Z Análise dinâmica não linear de estruturas abatidas. Non-linear dynamic analysis of shallow structures. Fabio Condado Barbosa Reyolando Manoel Lopes Rebello da Fonseca Brasil André Fenili José Roberto Castilho Piqueira Dinâmica das estruturas Estabilidade estrutural Structural dynamics Structural stability As estruturas, particularmente na engenharia civil, podem apresentar ruína quando atingem sua capacidade resistente ou quando perdem sua estabilidade, sendo, portanto atribuição básica do engenheiro de estruturas o estudo de ambas as situações. A instabilidade de uma estrutura pode surgir de dois modos, a saber: por ocorrência de uma bifurcação de equilíbrio ou por ocorrência de um ponto limite, também conhecido por snap-through, onde o aumento do carregamento provoca uma diminuição da rigidez da estrutura, até que esta se anula no ponto limite (REIS; CAMOTIM, 2012). Estruturas como arcos, treliças e calotas esféricas abatidas, presentes em grandes coberturas, são tipos de estruturas que podem apresentar esta instabilidade, em que há a passagem dinâmica da estrutura para uma configuração de equilíbrio afastada e estável, saltando para essa configuração pós-crítica envolvendo grandes deslocamentos e inversão da curvatura. Se, no entanto, o carregamento é dinâmico, como, por exemplo, harmônico, a resposta do sistema adquire uma grande riqueza de possíveis comportamentos, em função da amplitude e frequência desse carregamento. As respostas podem resultar vibrações periódicas de vários períodos diferentes, quase periódicas, caóticas etc. Este trabalho tem como objetivo fazer um estudo da estabilidade estática e dinâmica do problema da treliça simples de duas barras (treliça de Von Mises) e do arco abatido senoidal, de comportamento elástico linear, com o estabelecimento das equações de equilíbrio na configuração deformada, i.e., levando em conta a não linearidade geométrica. A avaliação da resposta, bem como a caracterização de sua estabilidade, se dará pela apresentação das cargas críticas de instabilidade do sistema perfeito, exibição do comportamento de pós-instabilidade e, com a integração numérica do modelo matemático, o estudo geométrico dado pelos planos de fase, mapas de Poincaré, diagramas de bifurcação e fronteira de estabilidade. Structures, particularly in civil engineering, can ruin when they reach their strength capacity or when they lose their stability. So, it is the basic assignment of the structural engineer to study both situations. The instability of a structure can arise in two ways, namely: by the occurrence of bifurcation of equilibrium or by the occurrence of a snap-through, where an increase of the loading causes a decrease in structure stiffness, until the stiffness is annulled in the limit point (REIS, CAMOTIM, 2012). Structures such as arches, trusses and domes, present in large roofs, are types of structures that may present this kind of instability, in which there is the dynamic passage of the structure to a far away stable equilibrium configuration, jumping to this post-critical configuration involving large displacements and reversal of the curvature. If, however, the load is dynamic, such as harmonic, the response of the system acquires a great wealth of possible behaviors, depending on the amplitude and frequency of this loading. The responses may result in periodic vibrations of several different periods, almost periodic, chaotic, etc. This work intends to study the static and the dynamic stability of the Von Mises truss and the shallow arc of linear elastic behavior, with the establishment of the equilibrium equations in the deformed configuration, i.e., taking into account the geometric non-linearity. The evaluation of the response, as well as the characterization of its stability, will be done by numerical integration of the mathematical model and geometric study of the phase planes, Poincaré maps, bifurcation diagrams and stability border. 2017-06-05 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/3/3144/tde-27112017-143431/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Engenharia Civil USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |