Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.

Mecanismo Flexível é um dispositivo mecânico utilizado para transformar movimento, força ou energia entre as portas de entrada e saída sem a presença de juntas, pinos baseados em uma estrutura em monolítica, em outras palavras, a transformação do movimento é dada pela flexibilidade de sua estrut...

Full description

Bibliographic Details
Main Author: Ricardo Doll Lahuerta
Other Authors: Emilio Carlos Nelli Silva
Language:Portuguese
Published: Universidade de São Paulo 2017
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3152/tde-27112017-140753/
id ndltd-IBICT-oai-teses.usp.br-tde-27112017-140753
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Flambagem
Mecanismos
Método dos Elementos Finitos
Compliant mechanism
Finite Element Method
Interior point method
Nonlinear buckling
Policonvexity
Topology optimization method
spellingShingle Flambagem
Mecanismos
Método dos Elementos Finitos
Compliant mechanism
Finite Element Method
Interior point method
Nonlinear buckling
Policonvexity
Topology optimization method
Ricardo Doll Lahuerta
Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
description Mecanismo Flexível é um dispositivo mecânico utilizado para transformar movimento, força ou energia entre as portas de entrada e saída sem a presença de juntas, pinos baseados em uma estrutura em monolítica, em outras palavras, a transformação do movimento é dada pela flexibilidade de sua estrutura. Deste modo a transformação pode ser direcionada em uma direção em específico, amplificando ou reduzindo o deslocamento ou força aplicados. Por este motivo mecanismos flexíveis tem grandes aplicações em micromanipulação e nano posicionamento. A concepção deste tipo de mecanismo é complexa e uma das possibilidades de elaboração deste dispositivo mecânico é através da distribuição de flexibilidade ou rigidez dentro do domínio de projeto utilizando o Método de Otimização Topológica (MOT), que essencialmente combina algoritmos de otimização numéricos como Método de Elementos Finitos (MEF), por exemplo. A grande maioria das classes de mecanismos flexíveis existentes trabalha sob pequenos deslocamentos, na ordem de micro ou nano metros, no entanto, existe uma classe de mecanismos que utiliza o recurso da flambagem não linear para operar com grandes deslocamentos. O procedimento de concepção desta de classe de mecanismo é complexa e ainda se encontra em estagio inicial, necessitando de aprimoramentos que permitam o seu projeto completo via métodos computacionais. Portanto, esta tese foi desenvolvida como objetivo desenvolver uma metodologia computacional para projetar esta classe de mecanismo flexível inovador que emprega a flambagem não linear na sua estrutura como meio para obter sob grandes deslocamentos na porta de saída. A metodologia desenvolvida se baseia no MOT para obter a topologia da estrutura que satisfaça as restrições de projeto. A modelagem do comportamento físico da estrutura utiliza uma formulação variacional não linear do problema elástico, considerando a cinemática não linear com um modelo constitutivo policonvexo. O modelo de material aplicado para obter a topologia da estrutura do mecanismo foi o Solid IsotropicMaterial with Penalization (SIMP) com um algoritmo de otimização numérico baseado no método de ponto interior, onde foi utilizada a implementação do IpOpt em conjunto com a plataforma Python FEniCS de soluções de Equações Diferenciais Parciais (EDPs). São apresentados resultados bidimensionais de mecanismos considerando algumas configurações de geometria, condições de contorno e restrições de flambagem não-linear, como incremento de carga. === The compliant mechanism is a mechanical device used to transform displacement, force or energy between the input and output ports without joints, pins based on a monolithic structure, in other words, the motion transformation is given by the flexibility of its structure. In this way the movement can be defined to a specific axis direction, amplifying or reducing the applied displacement or force. For this reason, the compliant mechanism has significant applications in micromanipulation and nanopositioning system. The design of this type of device is intricate, and one way to achieve such design is trying to distribution flexibility or rigidity within the design domain using the Topology Optimization Method (TOM), which essentially combines numerical optimization algorithms with Finite ElementMethod (FEM), for example. Most models of existing compliant mechanism work under small displacements, in the order of micro or nanometers, nevertheless, there is a class of such mechanisms that uses the nonlinear buckling behavior to operate under large displacements. The design process of this mechanism type is complicated and is still at early stages, requiring improvements that allow a complete design process via computational methods. Therefore, this thesis goal is to develop a computational methodology to create this class of innovative compliant mechanism that employs nonlinear buckling behavior to work under large displacement at the output port. The approach developed is based on TOM to achieve the optimal structure topology that satisfies the design and optimization constraints. The modeling of the elasticity behavior of the structure relies on the nonlinear variational formulation, applying the nonlinear kinematics with a polyconvex constitutive model. The SIMP is employed as a material model to obtain the optimal topology of the mechanismstructure with a numeric optimization algorithm based on the interior point method, where the IpOpt implementation was used with the high-level Python interfaces to FEniCS to solve the partial differential equations (PDEs) problem. Two-dimensional results ofmechanisms are presented considering some geometric, boundary configuration, and including nonlinear buckling as design constraints.
author2 Emilio Carlos Nelli Silva
author_facet Emilio Carlos Nelli Silva
Ricardo Doll Lahuerta
author Ricardo Doll Lahuerta
author_sort Ricardo Doll Lahuerta
title Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
title_short Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
title_full Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
title_fullStr Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
title_full_unstemmed Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
title_sort projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica.
publisher Universidade de São Paulo
publishDate 2017
url http://www.teses.usp.br/teses/disponiveis/3/3152/tde-27112017-140753/
work_keys_str_mv AT ricardodolllahuerta projetodemecanismosflexiveisbaseadonoefeitodaflambagemnaolinearutilizandoometododeotimizacaotopologica
AT ricardodolllahuerta designofcompliantmechanismsbasedonnonlinearbucklingbehaviorusingthetopologyoptimizationmethod
_version_ 1718904947103236096
spelling ndltd-IBICT-oai-teses.usp.br-tde-27112017-1407532019-01-21T23:18:06Z Projeto de mecanismos flexíveis baseado no efeito da flambagem não linear utilizando o método de otimização topológica. Design of compliant Mechanisms based on nonlinear buckling behavior using the topology optimization method. Ricardo Doll Lahuerta Emilio Carlos Nelli Silva Eduardo Lenz Cardoso Eduardo Alberto Fancello Thiago de Castro Martins Paulo de Mattos Pimenta Flambagem Mecanismos Método dos Elementos Finitos Compliant mechanism Finite Element Method Interior point method Nonlinear buckling Policonvexity Topology optimization method Mecanismo Flexível é um dispositivo mecânico utilizado para transformar movimento, força ou energia entre as portas de entrada e saída sem a presença de juntas, pinos baseados em uma estrutura em monolítica, em outras palavras, a transformação do movimento é dada pela flexibilidade de sua estrutura. Deste modo a transformação pode ser direcionada em uma direção em específico, amplificando ou reduzindo o deslocamento ou força aplicados. Por este motivo mecanismos flexíveis tem grandes aplicações em micromanipulação e nano posicionamento. A concepção deste tipo de mecanismo é complexa e uma das possibilidades de elaboração deste dispositivo mecânico é através da distribuição de flexibilidade ou rigidez dentro do domínio de projeto utilizando o Método de Otimização Topológica (MOT), que essencialmente combina algoritmos de otimização numéricos como Método de Elementos Finitos (MEF), por exemplo. A grande maioria das classes de mecanismos flexíveis existentes trabalha sob pequenos deslocamentos, na ordem de micro ou nano metros, no entanto, existe uma classe de mecanismos que utiliza o recurso da flambagem não linear para operar com grandes deslocamentos. O procedimento de concepção desta de classe de mecanismo é complexa e ainda se encontra em estagio inicial, necessitando de aprimoramentos que permitam o seu projeto completo via métodos computacionais. Portanto, esta tese foi desenvolvida como objetivo desenvolver uma metodologia computacional para projetar esta classe de mecanismo flexível inovador que emprega a flambagem não linear na sua estrutura como meio para obter sob grandes deslocamentos na porta de saída. A metodologia desenvolvida se baseia no MOT para obter a topologia da estrutura que satisfaça as restrições de projeto. A modelagem do comportamento físico da estrutura utiliza uma formulação variacional não linear do problema elástico, considerando a cinemática não linear com um modelo constitutivo policonvexo. O modelo de material aplicado para obter a topologia da estrutura do mecanismo foi o Solid IsotropicMaterial with Penalization (SIMP) com um algoritmo de otimização numérico baseado no método de ponto interior, onde foi utilizada a implementação do IpOpt em conjunto com a plataforma Python FEniCS de soluções de Equações Diferenciais Parciais (EDPs). São apresentados resultados bidimensionais de mecanismos considerando algumas configurações de geometria, condições de contorno e restrições de flambagem não-linear, como incremento de carga. The compliant mechanism is a mechanical device used to transform displacement, force or energy between the input and output ports without joints, pins based on a monolithic structure, in other words, the motion transformation is given by the flexibility of its structure. In this way the movement can be defined to a specific axis direction, amplifying or reducing the applied displacement or force. For this reason, the compliant mechanism has significant applications in micromanipulation and nanopositioning system. The design of this type of device is intricate, and one way to achieve such design is trying to distribution flexibility or rigidity within the design domain using the Topology Optimization Method (TOM), which essentially combines numerical optimization algorithms with Finite ElementMethod (FEM), for example. Most models of existing compliant mechanism work under small displacements, in the order of micro or nanometers, nevertheless, there is a class of such mechanisms that uses the nonlinear buckling behavior to operate under large displacements. The design process of this mechanism type is complicated and is still at early stages, requiring improvements that allow a complete design process via computational methods. Therefore, this thesis goal is to develop a computational methodology to create this class of innovative compliant mechanism that employs nonlinear buckling behavior to work under large displacement at the output port. The approach developed is based on TOM to achieve the optimal structure topology that satisfies the design and optimization constraints. The modeling of the elasticity behavior of the structure relies on the nonlinear variational formulation, applying the nonlinear kinematics with a polyconvex constitutive model. The SIMP is employed as a material model to obtain the optimal topology of the mechanismstructure with a numeric optimization algorithm based on the interior point method, where the IpOpt implementation was used with the high-level Python interfaces to FEniCS to solve the partial differential equations (PDEs) problem. Two-dimensional results ofmechanisms are presented considering some geometric, boundary configuration, and including nonlinear buckling as design constraints. 2017-09-12 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/3/3152/tde-27112017-140753/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Engenharia Mecânica USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP