Rate of convergence of attractors for abstract semilinear problems

In this work we study rate of convergence of attractors for parabolic equations. We consider various types of problems where the diffusion coefficient has varied profiles: large diffusion, localized large diffusion and large diffusion except in the neighborhood of a point where it becomes small....

Full description

Bibliographic Details
Main Author: Leonardo Pires
Other Authors: Alexandre Nolasco de Carvalho
Language:English
Published: Universidade de São Paulo 2016
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27102016-090449/
Description
Summary:In this work we study rate of convergence of attractors for parabolic equations. We consider various types of problems where the diffusion coefficient has varied profiles: large diffusion, localized large diffusion and large diffusion except in the neighborhood of a point where it becomes small. In all cases we obtain a singular perturbation where a rate of convergence of attractors is obtained. === Neste trabalho estudamos taxa de convergência de atratores para equações parabólicas. Consideramos vários tipos de problemas onde o coeficiente de difusão apresenta perfís variados: difusão grande, difusão grande localizada e difusão grande exceto na vizinhança de um ponto onde ela torna-se pequena. Em todos os casos consideramos perturbações singulares e uma taxa de convergência para os atratores é obtida.