Summary: | As Redes Neurais Pulsadas são objeto de intensa pesquisa na atualidade. Neste trabalho é avaliado o potencial de aplicação deste paradigma neural, na tarefa de reconhecimento automático do locutor. Após uma revisão dos tópicos considerados importantes para o entendimento do reconhecimento automático do locutor e das redes neurais artificiais, é realizada a implementação e testes do modelo de neurônio com resposta por impulsos. A partir deste modelo é proposta uma nova arquitetura de rede com neurônios pulsados para a implementação de um sistema de reconhecimento automático do locutor. Para a realização dos testes foi utilizada a base de dados Speaker Recognition v1.0, do CSLU Center for Spoken Language Understanding do Oregon Graduate Institute - E.U.A., contendo frases gravadas a partir de linhas telefônicas digitais. Para a etapa de classificação foi utilizada uma rede neural do tipo perceptron multicamada e os testes foram realizados no modo dependente e independente do texto. A viabilidade das Redes Neurais Pulsadas para o reconhecimento automático do locutor foi constatada, demonstrando que este paradigma neural é promissor para tratar as informações temporais do sinal de voz.
===
Pulsed Neural Networks have received a lot of attention from researchers. This work aims to verify the capability of this neural paradigm when applied to a speaker recognition task. After a description of the automatic speaker recognition and artificial neural networks fundamentals, a spike response model of neurons is tested. A novel neural network architecture based on this neuron model is proposed and used in a speaker recognition system. Text dependent and independent tests were performed using the Speaker Recognition v1.0 database from CSLU Center for Spoken Language Understanding of Oregon Graduate Institute - U.S.A. A multilayer perceptron is used as a classifier. The Pulsed Neural Networks demonstrated its capability to deal with temporal information and the use of this neural paradigm in a speaker recognition task is promising.
|