Summary: | A geração de grades horárias de qualidade é um fator crítico em qualquer instituição de ensino, tanto em escolas de ensino fundamental/médio como em universidades. Este problema é considerado complexo, pois devem ser relacionados e otimizados diversos recursos, tais como horários, disciplinas, professores e alunos. Em grande parte das instituições de ensino, a geração de grades horárias é realizada manualmente, o que vem a tornar este processo custoso e sujeito a falhas. Diversas abordagens são também encontradas na literatura para resolução deste problema, nas quais foram aplicados métodos de busca estocástica, devido à sua inerente complexidade. As estratégias de busca formuladas e comparadas no presente trabalho foram baseadas no uso de algoritmos genéticos e de sistemas imunológicos artificiais. Tais técnicas foram capazes de fornecer soluções de qualidade para o problema de geração automática de grades horárias. Neste trabalho foram desenvolvidos dois sistemas de apoio à decisão, nos quais foram combinadas técnicas heurísticas aos algoritmos genéticos e ao algoritmo de seleção clonal. O propósito desta investigação é realizar uma análise comparativa entre as duas técnicas a fim de verificar qual delas apresenta resultados mais promissores para a resolução do problema de geração automática de grades horárias.
===
The generation of timetables with good quality is a critical factor in any educational institution. This is considered a complex problem because it involves several types of information, such as schedules, course subjects, teachers and students. Several search strategies have been applied to solve timetabling problems, whose constraints may vary from one educational institution to another. Most educational institutions still prepare their timetables manually, which is a highly time-consuming process and subjected to errors. Several approaches to solve this problem are also found in technical studies, which use stochastic search methods due to the problems complexity. The search optimization methods used in this work to solve the timetabling problem are genetic algorithms and the clonal selection algorithm, whose satisfactory results when applied to optimization problems are reported in the literature. Two decision support systems were developed in this work, combining heuristic techniques with the genetic algorithms and the clonal selection algorithm. The purpose of this research is to make a comparative analysis of these two techniques in order to determine which one offers the most promising results for solving the timetabling problem.
|