Summary: | Este trabalho é dedicado ao estudo do comportamento a longo prazo de uma equação de placas extensíveis acoplada a uma equação de calor do tipo hiperbólico. O problema corresponde a um modelo de termo-elasticidade baseado em teorias de calor do tipo não-Fourier. Considerando que efeitos de inércia de rotação estão presentes no modelo, mostramos que o efeito dissipativo do calor e suficiente para estabilizar exponencialmente o sistema, sem dissipações adicionais. Além disso, provamos que o sistema possui um atrator global de dimensão fractal finita e também atratores exponenciais. Nossos resultados generalizam e complementam diversos trabalhos existentes
===
This work is concerned with long-time dynamics of solutions of extensible plate equations with thermal memory. It corresponds to a model of thermoelasticity based on a theory of non-Fourier heat flux. By considering the case where rotational inertia is present we show that the thermal dissipation is sufficient to stabilize the system exponentially and guarantee the existence of a finite-dimensional global attractor. In addition the existence of an exponential attractor and some further properties are also considered. Our results complements several existing results
|