Summary: | O mapeamento e a estimação de riscos e incidências são ferramentas muito úteis para a Epidemiologia pois, auxiliam na prevenção de agravos da saúde e, também auxiliam no planejamento e avaliação dos serviços de saúde. Este trabalho busca utilizar uma ferramenta estatística que incorpora de forma adequada este tipo de análise ao estudo de outras características que estejam relacionadas a estes agravos. No presente trabalho utiliza-se como aplicação dados do estudo caso-controle espacial com base populacional de acidentes de trabalho com a proposta de estimar a distribuição espacial do risco de sofrer acidente de trabalho na área urbana do município de Piracicaba/SP entre trabalhadores que se encontravam na situação de precarização do trabalho em associação com outras variáveis de interesse através de modelos aditivos generalizados (MAG) e, através disso, mostrar que ao incorporar de forma explícita o espaço no processo de modelagem dos dados ocorre um ganho significativo na explicação da variação do risco. O modelo MAG utilizado tem variável resposta binomial (caso e controle) e multinomial (caso e controle separados pela gravidade do acidente sofrido). Com os modelos ajustados, mapas foram desenhados com indicações de diferentes cores para a intensidade do risco de sofrer acidente de trabalho. Outra abordagem utilizada para os dados espaciais de acidentes de trabalho foi a INLA (INTEGRATED NESTED LAPLACE APPROXIMATIONS), a qual é utilizada como processo de modelagem para a família dos modelos Gaussianos latentes através de novos métodos para esta família de modelos. A intenção foi mostrar como essa nova abordagem lida com dados do tipo espacial e, fazer uma comparação com a abordagem feita pela modelagem GAM
===
Mapping and estimation of risks and impacts are very useful tools for Epidemiology at the assistance in prevention of injuries and health, also assists in planning and evaluation of health services. This paper seeks to use a statistical tool that adequately incorporates this type of analysis to the study of other characteristics that are related these illnesses. In the present work is used as application data from case-control study space-based population accidents with the proposal to estimate the spatial distribution of risk of suffering an accident at work in the urban area of Piracicaba/SP among workers who were in employed as casual labor in combination with other variables of interest using generalized additive models (GAM) and, thereby, show that by incorporating explicitly space in the process of data modeling is a gain significant in explaining the variation in risk. The GAM model have used binomial response variable (case and control) and multinomial (case and control separated by the severity of the accident suffered). With the adjusted models, maps were drawn with indications of different colors to the intensity of the risk of accident. Another approach used for spatial data on accidents at work was the INLA (INTEGRATED NESTED LAPLACE APPROXIMATIONS), which is used as a modeling process for the family of latent Gaussian models through new methods for this family of models. The intention was to show how this new approach deals with spatial data and a comparison with the approach made by GAM modeling.
|