Summary: | Sistemas de Recomendação (SR) vêm se apresentando como poderosas ferramentas para portais web tais como sítios de comércio eletrônico. Para fazer suas recomendações, os SR se utilizam de fontes de dados variadas, as quais capturam as características dos usuários, dos itens e suas transações, bem como de modelos de predição. Dada a grande quantidade de dados envolvidos, é improvável que todas as recomendações possam ser bem representadas por um único modelo global de predição. Um outro importante aspecto a ser observado é o problema conhecido por cold-start, que apesar dos avanços na área de SR, é ainda uma questão relevante que merece uma maior atenção. O problema está relacionado com a falta de informação prévia sobre novos usuários ou novos itens do sistema. Esta tese apresenta uma abordagem híbrida de recomendação capaz de lidar com situações extremas de cold-start. A abordagem foi desenvolvida com base no algoritmo SCOAL (Simultaneous Co-Clustering and Learning). Na sua versão original, baseada em múltiplos modelos lineares de predição, o algoritmo SCOAL mostrou-se eficiente e versátil, podendo ser utilizado numa ampla gama de problemas de classificação e/ou regressão. Para melhorar o algoritmo SCOAL no sentido de deixá-lo mais versátil por meio do uso de modelos não lineares, esta tese apresenta uma variante do algoritmo SCOAL que utiliza modelos de predição baseados em Máquinas de Aprendizado Extremo. Além da capacidade de predição, um outro fator que deve ser levado em consideração no desenvolvimento de SR é a escalabilidade do sistema. Neste sentido, foi desenvolvida uma versão paralela do algoritmo SCOAL baseada em OpenMP, que minimiza o tempo envolvido no cálculo dos modelos de predição. Experimentos computacionais controlados, por meio de bases de dados amplamente usadas na prática, comprovam que todos os desenvolvimentos propostos tornam o SCOAL ainda mais atraente para aplicações práticas variadas.
===
Recommender Systems (RS) are powerful and popular tools for e-commerce. To build its recommendations, RS make use of multiple data sources, capture the characteristics of items, users and their transactions, and take advantage of prediction models. Given the large amount of data involved in the predictions made by RS, is unlikely that all predictions can be well represented by a single global model. Another important aspect to note is the problem known as cold-start that, despite that recent advances in the RS area, it is still a relevant issue that deserves further attention. The problem arises due to the lack of prior information about new users and new items. This thesis presents a hybrid recommendation approach that addresses the (pure) cold start problem, where no collaborative information (ratings) is available for new users. The approach is based on an existing algorithm, named SCOAL (Simultaneous Co-Clustering and Learning). In its original version, based on multiple linear prediction models, the SCOAL algorithm has shown to be efficient and versatile. In addition, it can be used in a wide range of problems of classification and / or regression. The SCOAL algorithm showed impressive results with the use of linear prediction models, but there is still room for improvements with nonlinear models. From this perspective, this thesis presents a variant of the SCOAL based on Extreme Learning Machines. Besides improving the accuracy, another important issue related to the development of RS is system scalability. In this sense, a parallel version of the SCOAL, based on OpenMP, was developed, aimed at minimizing the computational cost involved as prediction models are learned. Experiments using real-world datasets has shown that all proposed developments make SCOAL algorithm even more attractive for a variety of practical applications.
|