Summary: | Teste de propriedades em grafos consiste no estudo de algoritmos aleatórios sublineares que determinam se um grafo $G$ de entrada com $n$ vértices satisfaz uma dada propriedade ou se é necessário adicionar ou remover mais do que $\\epsilon{n \\choose 2}$ arestas para fazer $G$ satisfazê-la, para algum parâmetro $\\epsilon$ de erro fixo. Uma propriedade de grafos $P$ é dita testável se, para todo $\\epsilon > 0$, existe um tal algoritmo para $P$ cujo tempo de execução é independente de $n$. Um dos resultados de maior importância nesta área, provado por Alon e Shapira, afirma que toda propriedade hereditária de grafos é testável. Neste trabalho, apresentamos resultados análogos para torneios --- grafos completos nos quais são dadas orientações para cada aresta.
===
Graph property testing is the study of randomized sublinear algorithms which decide if an input graph $G$ with $n$ vertices satisfies a given property or if it is necessary to add or remove more than $\\epsilon{n \\choose 2}$ edges to make $G$ satisfy it, for some fixed error parameter $\\epsilon$ . A graph property $P$ is called testable if, for every $\\epsilon > 0$, there is such an algorithm for $P$ whose run time is independent of $n$. One of the most important results in this area is due to Alon and Shapira, who showed that every hereditary graph property is testable. In this work, we show analogous results for tournaments --- complete graphs in which every edge is given an orientation.
|