Summary: | A teoria da acustoelasticidade relaciona a variação de velocidade de propagação de ondas mecânicas à variação de tensão em um meio sólido. Em materiais frágeis como concreto, a danificação altera a velocidade de propagação paralelamente ao efeito acustoelástico. O objetivo deste trabalho é identificar e quantificar como a danificação e o efeito acustoelástico agem sobre a Velocidade de Pulso Ultrassônico (VPU) em corpos de prova de concreto submetidos a compressão uniaxial. Para tanto, foram realizadas três fases de ensaio. A primeira fase objetivou gerar dados para a análise da aplicação da interferometria de cauda de onda (Coda Wave Interferometry – CWI). Duas variações deste método foram estudadas e comparadas, com o propósito de determinar-se qual gera melhores resultados e quais parâmetros devem ser adotados para as análises. Para tal, um código computacional foi desenvolvido utilizando a linguagem Python 3.6.0. Foi constatado que a técnica do alongamento apresenta resultados melhores que a técnica tradicional da interferometria de cauda de onda. A segunda etapa foi dedicada ao estudo da variação de velocidade de propagação devido à recuperação de dano do corpo de prova. A terceira fase abordou a influência da geometria da amostra e da composição do concreto sobre a resposta do material à acustoelasticidade. Além disso, definiu-se um Índice de Dano (D) baseado na redução do módulo de elasticidade devido ao carregamento, a fim de isolar a variação de velocidade causada pelo efeito acustoelástico. Quanto ao estudo da recuperação de dano ao longo do tempo, a variação relativa de velocidade nas primeiras 24 horas após a retirada do carregamento se mostrou muito pequena em relação às variações geradas pelas condições de temperatura e umidade. Concluiu-se também que as amostras cilíndricas apresentaram respostas mais uniformes ao efeito acustoelástico que as amostras prismáticas. Por fim, o Índice de Dano se mostrou eficaz para isolar os efeitos da danificação e da acustoelasticidade sobre a VPU.
===
The acoustoelasticity theory relates the variation in propagation velocity of mechanical waves to the stress variation in a solid medium. In brittle materials such as concrete, damage affects the propagation velocity parallel to the acoustoelastic effect. This research aims to identify and quantify how damage and acoustoelastic effect act on Ultrasonic Pulse Velocity (UPV) in concrete samples subjected to uniaxial compression. In order to do so, three phases of testing were performed. The first one focused on generating data to analyze the application of the Coda Wave Interferometry (CWI). Two variations of this method were studied and compared, to the purpose of determining which variation shows better results and which parameters should be adopted in the analysis. To enable the analysis, a computational code using Python 3.6.0 language was developed. It was verified that the stretching technique shows better results than the traditional coda wave interferometry technique. The second phase was dedicated to study the variation in propagation velocity due to damage recovery in the sample. The third phase addressed the influence of the sample geometry and the concrete composition over the response from the material to the acoustoelasticity. Furthermore, a Damage Index (D) was defined based on the elastic modulus reduction due to loading, in order to isolate the variation of velocity due solely to the acoustoelastic effect. Regarding the study of damage recovery over time, the relative velocity variation in the first 24 hours following the withdrawal of the loading showed to be too little when compared to the variations caused by temperature and humidity conditions. It was also concluded that the cylindrical samples showed more uniform responses to the acoustoelastic effect than the prismatic samples. Finally, the Damage Index proved itself to be a reliable tool to isolate the effects of damage and acoustoelasticity over the UPV.
|