Summary: | No ajuste de um modelo de regressão pelo método;:) dos mínimos quadrados, é importante destacar a influência que cada valor observado tem sobre seu respectivo valor ajustado. A matriz de projeção, conhecida como Hat-MatrixU, contém estas informações e, juntamente com a análise dos resíduos estudentizados, fornece subsídios para determinar a existência de pontos influentes e/ou discrepantes (HOAGLH & WELSCH, 1978). Com a finalidade de detectar tais pontos em um modelo de regressão, foram propostas nos últimos anos, várias medidas de diagnóstico. As principais são apresentadas e discutidas no texto. Apesenta-se ainda um procedimento, gráfico, denominado gráfico L-R ("Leverage-Residual PIot'), de utilidade para determinar a causa da influência de uma observação através da análise dos elementos da diagonal da matriz de projeção, dos resíduos, e do efeito combinado destas duas medidas (GRAY, 1986) Para ilustração, tornou-se um exemplo com dados reais, na área de agronomia. Além disso desenvolveu-se um programa em linguagem TURBO- BASIC, utilizável em microcomputadores compatíveis ao padrão IBM-PC/XT, que proporciona as soluções desejáveis neste estudo. O método dói matriz de projeção mostrou-se eficiente na determinação de pontos influentes e/ou discrepantes. Das medidas de diagnóstico, a estatística D de COOK foi a que revelou melhores resultados.
===
When a least-squares fitting procedure is done it seems to be of some importance to know the influence that a y observed value could have on the y fitted datum. Such an information may be obtained from a projection matrix, the well know"Hat-Matrix", and also from the studentized residuals wich provides the identification of possible unusual data points (HOAGLIN & WELSCH, 1978). Here, a considerable number of statistics proposed for the study of outliers and the influence of observations in regression analysis is presented and discussed. The L-R plot (Leverage-Residual Plot) graphical display is also included in order to find the relative cause of influence, its residuals or their combined effects (GRAY, 1986). Finally, a real data example from agronomical sciences is studied through a computing program specially developed. It is also observed the efficiency of the"Hat-Matrix"to detect influent values and that of the Cook's D Statistcs as a diagnostic measure
|