"O framework de integração do sistema DISCOVER"
Talvez uma das maiores capacidades do ser humano seja a sua habilidade de aprender a partir de observações e transmitir o que aprendeu para outros humanos. Durante séculos, a humanidade vem tentado compreender o mundo em que vive e, a partir desse novo conhecimento adquirido, melhorar o mundo em...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2003
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082003-152116/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-20082003-152116 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Aprendizado de Máquina
Descoberta de Conhecimento Discover Mineração de Dados Data Mining Discover Knowledge Discovery Machine Learning |
spellingShingle |
Aprendizado de Máquina
Descoberta de Conhecimento Discover Mineração de Dados Data Mining Discover Knowledge Discovery Machine Learning Ronaldo Cristiano Prati "O framework de integração do sistema DISCOVER" |
description |
Talvez uma das maiores capacidades do ser humano seja a sua habilidade de aprender a partir de observações e transmitir o que aprendeu para outros humanos. Durante séculos, a humanidade vem tentado compreender o mundo em que vive e, a partir desse novo conhecimento adquirido, melhorar o mundo em que vive. O desenvolvimento da tecnologia colocou a descoberta de conhecimento em um momento ímpar na história da humanidade. Com os progressos da Ciência da Computação, e, em particular, da Inteligência Artificial - IA - e Aprendizado de Máquina -AM, hoje em dia é possível, a partir de métodos de inferência indutiva e utilizando um conjunto de exemplos, descobrir algum tipo de conhecimento implícito nesses exemplos. Entretanto, por ser uma área de pesquisa relativamente nova, e por envolver um processo tanto iterativo quanto interativo, atualmente existem poucas ferramentas que suportam eficientemente a descoberta de conhecimento a partir dos dados. Essa falta de ferramentas se agrava ainda mais no que se refere ao seu uso por pesquisadores em Aprendizado de Máquina e Aquisição de Conhecimento. Esses fatores, além do fato que algumas pesquisas em nosso Laboratório de Inteligência Computacional - LABIC - têm alguns componentes em comum, motivaram a elaboração do projeto Discover, que consiste em uma estratégia de trabalho em conjunto, envolvendo um conjunto de ferramentas que se integram e interajam, e que supram as necessidades de pesquisa dos integrantes do nosso laboratório. O Discover também pode ser utilizado como um campo de prova para desenvolver novas ferramentas e testar novas idéias. Como o Discover tem como principal finalidade o seu uso e extensão por pesquisadores, uma questão principal é que a arquitetura do projeto seja flexível o suficiente para permitir que novas pesquisas sejam englobadas e, simultaneamente, deve impor determinados padrões que permitam a integração eficiente de seus componentes. Neste trabalho, é proposto um framework de integração de componentes que tem como principal objetivo possibilitar a criação de um sistema computacional a partir das ferramentas desenvolvidas para serem utilizadas no projeto Discover. Esse framework compreende um mecanismo de adaptação de interface que cria uma camada (interface horizontal) sobre essas ferramentas, um poderoso mecanismo de metadados, que é utilizado para descrever tanto os componentes que implementam as funcionalidades do sistema quanto as configurações de experimentos criadas pelos usuário, que serão executadas pelo framework, e um ambiente de execução para essas configurações de experimentos.
===
One of human greatest capability is the ability to learn from observed instances of the world and to transmit what have been learnt to others. For thousands of years, we have tried to understand the world, and used the acquired knowledge to improve it. Nowadays, due to the progress in digital data acquisition and storage technology as well as significant progress in the field of Artificial Intelligence - AI, particularly Machine Learning - ML, it is possible to use inductive inference in huge databases in order to find, or discover, new knowledge from these data. The discipline concerned with this task has become known as Knowledge Discovery from Databases - KDD. However, this relatively new research area offers few tools that can efficiently be used to acquire knowledge from data. With these in mind, a group of researchers at the Computational Intelligence Laboratory - LABIC - is working on a system, called Discover, in order to help our research activities in KDD and ML. The aim of the system is to integrate ML algorithms mostly used by the community with the data and knowledge processing tools developed as the results of our work. The system can also be used as a workbench for new tools and ideas. As the main concern of the Discover is related to its use and extension by researches, an important question is related to the flexibility of its architecture. Furthermore, the Discover architecture should allow new tools be easily incorporated. Also, it should impose strong patterns to guarantee efficient component integration. In this work, we propose a component integration framework that aims the development of an integrated computational environment using the tools already implemented in the Discover project. The proposed component integration framework has been developed keeping in mind its future integration with new tools. This framework offers an interface adapter mechanism that creates a layer (horizontal interface) over these tools, a powerful metadata mechanism, which is used to describe both components implementing systems' functionalities and experiment configurations created by the user, and an environment that enables these experiment execution.
|
author2 |
Maria Carolina Monard |
author_facet |
Maria Carolina Monard Ronaldo Cristiano Prati |
author |
Ronaldo Cristiano Prati |
author_sort |
Ronaldo Cristiano Prati |
title |
"O framework de integração do sistema DISCOVER"
|
title_short |
"O framework de integração do sistema DISCOVER"
|
title_full |
"O framework de integração do sistema DISCOVER"
|
title_fullStr |
"O framework de integração do sistema DISCOVER"
|
title_full_unstemmed |
"O framework de integração do sistema DISCOVER"
|
title_sort |
"o framework de integração do sistema discover" |
publisher |
Universidade de São Paulo |
publishDate |
2003 |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082003-152116/ |
work_keys_str_mv |
AT ronaldocristianoprati oframeworkdeintegracaodosistemadiscover AT ronaldocristianoprati thediscoverintegrationframework |
_version_ |
1718931174716342272 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-20082003-1521162019-01-22T01:09:01Z "O framework de integração do sistema DISCOVER" The Discover integration framework Ronaldo Cristiano Prati Maria Carolina Monard Marcos Augusto Hochuli Shmeil Claudia Maria Lima Werner Aprendizado de Máquina Descoberta de Conhecimento Discover Mineração de Dados Data Mining Discover Knowledge Discovery Machine Learning Talvez uma das maiores capacidades do ser humano seja a sua habilidade de aprender a partir de observações e transmitir o que aprendeu para outros humanos. Durante séculos, a humanidade vem tentado compreender o mundo em que vive e, a partir desse novo conhecimento adquirido, melhorar o mundo em que vive. O desenvolvimento da tecnologia colocou a descoberta de conhecimento em um momento ímpar na história da humanidade. Com os progressos da Ciência da Computação, e, em particular, da Inteligência Artificial - IA - e Aprendizado de Máquina -AM, hoje em dia é possível, a partir de métodos de inferência indutiva e utilizando um conjunto de exemplos, descobrir algum tipo de conhecimento implícito nesses exemplos. Entretanto, por ser uma área de pesquisa relativamente nova, e por envolver um processo tanto iterativo quanto interativo, atualmente existem poucas ferramentas que suportam eficientemente a descoberta de conhecimento a partir dos dados. Essa falta de ferramentas se agrava ainda mais no que se refere ao seu uso por pesquisadores em Aprendizado de Máquina e Aquisição de Conhecimento. Esses fatores, além do fato que algumas pesquisas em nosso Laboratório de Inteligência Computacional - LABIC - têm alguns componentes em comum, motivaram a elaboração do projeto Discover, que consiste em uma estratégia de trabalho em conjunto, envolvendo um conjunto de ferramentas que se integram e interajam, e que supram as necessidades de pesquisa dos integrantes do nosso laboratório. O Discover também pode ser utilizado como um campo de prova para desenvolver novas ferramentas e testar novas idéias. Como o Discover tem como principal finalidade o seu uso e extensão por pesquisadores, uma questão principal é que a arquitetura do projeto seja flexível o suficiente para permitir que novas pesquisas sejam englobadas e, simultaneamente, deve impor determinados padrões que permitam a integração eficiente de seus componentes. Neste trabalho, é proposto um framework de integração de componentes que tem como principal objetivo possibilitar a criação de um sistema computacional a partir das ferramentas desenvolvidas para serem utilizadas no projeto Discover. Esse framework compreende um mecanismo de adaptação de interface que cria uma camada (interface horizontal) sobre essas ferramentas, um poderoso mecanismo de metadados, que é utilizado para descrever tanto os componentes que implementam as funcionalidades do sistema quanto as configurações de experimentos criadas pelos usuário, que serão executadas pelo framework, e um ambiente de execução para essas configurações de experimentos. One of human greatest capability is the ability to learn from observed instances of the world and to transmit what have been learnt to others. For thousands of years, we have tried to understand the world, and used the acquired knowledge to improve it. Nowadays, due to the progress in digital data acquisition and storage technology as well as significant progress in the field of Artificial Intelligence - AI, particularly Machine Learning - ML, it is possible to use inductive inference in huge databases in order to find, or discover, new knowledge from these data. The discipline concerned with this task has become known as Knowledge Discovery from Databases - KDD. However, this relatively new research area offers few tools that can efficiently be used to acquire knowledge from data. With these in mind, a group of researchers at the Computational Intelligence Laboratory - LABIC - is working on a system, called Discover, in order to help our research activities in KDD and ML. The aim of the system is to integrate ML algorithms mostly used by the community with the data and knowledge processing tools developed as the results of our work. The system can also be used as a workbench for new tools and ideas. As the main concern of the Discover is related to its use and extension by researches, an important question is related to the flexibility of its architecture. Furthermore, the Discover architecture should allow new tools be easily incorporated. Also, it should impose strong patterns to guarantee efficient component integration. In this work, we propose a component integration framework that aims the development of an integrated computational environment using the tools already implemented in the Discover project. The proposed component integration framework has been developed keeping in mind its future integration with new tools. This framework offers an interface adapter mechanism that creates a layer (horizontal interface) over these tools, a powerful metadata mechanism, which is used to describe both components implementing systems' functionalities and experiment configurations created by the user, and an environment that enables these experiment execution. 2003-04-04 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20082003-152116/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Ciências da Computação e Matemática Computacional USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |