Summary: | Parametrizações de modelos e estruturas de correlações dos parâmetros no âmbito agropecuário são importantes por caracterizarem o comportamento de um sistema em resposta a variações de múltiplos cenários (clima, genótipos, dietas nutricionais, dentre outros fatores) que existem em escalas globais. O objetivo foi contribuir com inferências estatísticas na produção de gases CO2 [um potente Gás de Efeito Estufa (GEE)] nas fermentações in vitro de feno de alfafa, comparando métodos frequentistas com novas metodologias surgidas na literatura científica como a combinação dos métodos de Rejeição por Atraso e o Metropólis Adaptativo (RAMA), até então não testados para predições de gases de fermentação in vitro. Além disso, modelos de séries temporais foram usados para previsão da produção de CO2 nas fermentações de gases in vitro de feno de alfafa. Dentro do contexto de crescimento de gado de corte, foi realizada pela primeira vez uma abordagem para predições individuais dos animais para taxa de ganho de peso e a necessidade de energia para mantença baseada na dinâmica de crescimento e composição química corporal do Modelo de Crescimento de Davis (MCD), com comparação de análise de covariância multivariada entre diferentes cenários (gêneros, sistemas e genótipo cruzados), em um experimento a campo no Brasil. Adicionalmente calibrações dos parâmetros baseadas na amostra de cada cenário, pelos ajustes do MCD e usando análise frequentista, bootstrap não-paramétrico e simulações Monte Carlo foram realizadas com os dados nacionais (raça cruzada) e comparada com as estimativas originais do modelo obtido com raças Britânicas (Bos taurus). Os principais critérios adotados para avaliar os ajustes dos modelos foram o Erro Quadrático Médio de Predição (EQMP), o Critério de Informação Akaike (AIC) e o Critério de Informação Bayesiano (BIC). Os resultados não só contribuirão para o avanço da literatura existente, mas também auxiliarão a indústria de carne bovina e produtores rurais a encontrar especificações do mercado de carne, tanto a nível nacional e internacional. Concluiu-se que i) na produção de gases: o modelo ARIMA (1, 1, 2) ajustou a produção acumulativa de CO2, atingindo o valor máximo de 1,1066 (mL) no tempo de 47,5 h e a equação é indicada para estimar a produção de gases; ii) no crescimento de gados de corte usando as estimativas individuais do MCD, os vetores de efeitos de energia de mantença e o acréscimo de proteína possuem efeitos pronunciados quanto as interações entre sistemas e gêneros; iii) no crescimento de gados de corte usando as estimativas da amostra total com MCD, os genótipos cruzados tiveram maior gasto de energia de mantença e foram mais rápidos de maturação em comparação tanto com os animais de genótipos Britânicos (Bos taurus) e touros Nelores. A técnica de bootstrap não-paramétrica estimou com sucesso as distribuições dos parâmetros (que tiveram distribuição probabilidade normal para maioria dos cenários). Correlação negativa entre os parâmetros de acréscimo de DNA e energia de mantença foram encontrados para animais machos não castrados do sistema extensivo, indicando que foram mais eficientes no uso da energia. A generalização de tal relação ainda demanda estudos mais abrangentes e aprofundados.
===
Model parameter fitting and parameter correlation structures are important for characterize a system\'s behaviour in response to multiple scenarios variations (climate, genotypes, nutritional diet and other factors). The aim was to contribute to statistical inferences in the production of CO2 [a potent greenhouse gas (GHG)] in vitro fermentation of alfalfa hay, comparing frequentist methods with new methodologies that emerged in the scientific literature, such as the combination of a delay Rejection and the Adaptive Metropolis methods (RAMA), not yet tested for in vitro fermentation gases predictions. In addition, time series models were used to predict CO2 production in the in vitro fermentation of alfalfa hay. For the first time, individual predictions of animal weight gain rate and energy of maintenance based on the growth dynamics and body composition Davis Growth Model (DGM) was carried out besides multivariate covariance analysis of different scenarios (genres, systems and crossed genotype). Additionally, parameter estimation based on sample of each scenario, using frequentist analysis, nonparametric bootstrap and Monte Carlo simulations were performed with national data (cross breed) and compared to the original estimates of the model obtained with British breeds (Bos taurus). The main criteria used to evaluate the model accuracy were the Mean Square Error of Prediction (MSEP), the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The results not only contribute to the scientific progress in modeling animal growth and composition, but also assist the beef industry and farmers to adjust the production process to the meat market specifications, both nationally and internationally. For in vitro gas production, we concluded that the ARIMA (1, 1, 2) model presented the highest accuracy in predicting cumulative CO2 production and the respective equation is recommended for estimating CO2 production. In the growth beef cattle using the individual estimates DGM, average vectors from maintenance of energy and protein accretion showed pronounced effects as the interactions between systems and genres. Also the total sample with DGM, cross-breed genotypes had higher maintenance energy expenditure and were faster-maturing compared with British genotypes animals(Bos taurus) and Nellore bulls estimates. Bootstrap nonparametric with downhill simplex optimization method successfully estimated the distributions of the parameters (that had normal probability distribution for most scenarios). Uncastrated male animals of the extensive system showed negative correlation between the protein deposition rate and requirement for energy maintenance, indicating that animals with faster lean tissue deposition were also more efficient in energy usage. We warn that the generalization of this finding demands studies with larger populations.
|