Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos

As análises de grupos de experimentos, de grande importância em melhoramento genético, são indispensáveis quando se pretende investigar o comportamento de alguns tratamentos em diversos locais de interesse do pesquisador. Nestes casos, parte-se das analises de variância individuais em cada local...

Full description

Bibliographic Details
Main Author: Cássio Dessotti
Other Authors: Sonia Maria de Stefano Piedade
Language:Portuguese
Published: Universidade de São Paulo 2010
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/11/11134/tde-19022010-100820/
id ndltd-IBICT-oai-teses.usp.br-tde-19022010-100820
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Análise de variância
Estatística aplicada
Melhoramento genético
Modelagem de dados
Planejamento e análise de experimentos
Softwares.
Applied statistics
Data modeling
Genetic improvement
Planning and experimental analysis
Softwares
Variance analysis
spellingShingle Análise de variância
Estatística aplicada
Melhoramento genético
Modelagem de dados
Planejamento e análise de experimentos
Softwares.
Applied statistics
Data modeling
Genetic improvement
Planning and experimental analysis
Softwares
Variance analysis
Cássio Dessotti
Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
description As análises de grupos de experimentos, de grande importância em melhoramento genético, são indispensáveis quando se pretende investigar o comportamento de alguns tratamentos em diversos locais de interesse do pesquisador. Nestes casos, parte-se das analises de variância individuais em cada local, para o agrupamento de todos os ensaios em uma única analise. Verifica-se então a veracidade da significância da interação tratamentos versus locais - TL, sendo esta não-significativa, pode-se obter conclusões generalizados a respeito do comportamento dos tratamentos. No entanto, o grande interesse esta nos casos de interação significativa, em que dois caminhos de destaque surgem para que se conclua a analise, o primeiro, permite que se considerem os resultados e conclusões das analises individuais, com o resíduo específico de cada local, enquanto o segundo aconselha que se desdobrem os graus de liberdade relativos a tratamentos + interação significativa, visando a interpretação dos tratamentos em estudo dentro de cada um dos locais, utilizando o resíduo médio como testador. Partindo do fato de que componentes de variância são variâncias associadas aos efeitos aleatórios de um modelo matemático, que permitem quantificar a variabilidade de tais efeitos, tem-se por objetivo neste trabalho, em grupos de experimentos reais com interação TL significativa, comparar os componentes de variância obtidos nas analises individuais utilizando os quadrados médios residuais - QMRes de cada ensaio versus os obtidos pós-desdobramento da interação em questão utilizando o quadrado médio do resíduo médio - QMRM. Tal confronto será fundamentado nas estimativas de variâncias das estimativas destes componentes. Finalmente, em grupos de ensaios reais e simulados, o objetivo será voltado para a comparação de rols classificatórios de tratamentos nas analises individuais versus os rols classificatórios de tratamentos obtidos pós-desdobramento da interação em questão. A montagem destes rols será possível a partir do uso do teste de Tukey, ao nível de 5% de significância, para os cálculos das diferenças mínimas significativas - dms ora com resíduos de analises individuais, ora de conjunta. Todos os cálculos deste trabalho serão realizados no software estatístico R. === The experimental groups analysis, of great importance in genetic improvement, are essential when intends to investigate the treatments behaviour in many places from researcher interest. In these cases, starts by the individual variance analysis in each place, to the grouping of all experiments in a single analysis. Examine the truth of the signicant treatments vs. places interaction - TL, being this no-signicant, is possible to obtain generalized conclusions about the treatments behaviour. However, the interest is in the cases when signi cant interaction is found, because two eminence ways appear for the analysis conclusions, the rst one allow that the individual analysis results and conclusions be considered, with the specic residue from each place, while the second one advise, that the degrees of freedom relative to treatments + signicant interaction be unfound, looking at the interpretation of the treatments in study inside each place, using the mean residue how testator. Starting with the fact that variance components are variances associated to the aleatory eects of a mathematical model, that allow the quantifying of such eects, this work objective, in real experimental groups, with signicant interaction TL, is to compare the variance components obtained in individual analysis using the residual mean square - QMRes from each experiment against the obtained after unfolding the interaction in question using the mean residual mean square - QMRM. This confrontation will be based in variance estimations of these components estimations. Finally, in real and simulate experimental groups, the objective will be directed to the comparison of treatments classicatory rankings in individual analysis vs. the treatments classi catory rankings obtained after unfolding of the interaction in question. The construction of these rankings will be possible using the Tukey test, with 5% of signicance, for the calculation of the signicants minimum dierences - dms, a time with individual analysis residual, othertime, conjunct. All the calculations from this work will be realized in the R statistical software.
author2 Sonia Maria de Stefano Piedade
author_facet Sonia Maria de Stefano Piedade
Cássio Dessotti
author Cássio Dessotti
author_sort Cássio Dessotti
title Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
title_short Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
title_full Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
title_fullStr Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
title_full_unstemmed Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
title_sort comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos
publisher Universidade de São Paulo
publishDate 2010
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-19022010-100820/
work_keys_str_mv AT cassiodessotti comparacaoderolsclassificatoriosdetratamentosedeestimativasdecomponentesdevarianciaemgruposdeexperimentos
AT cassiodessotti comparisonoftreatmentsclassicatoryrankingsandofvariancecomponentsestimatesinexperimentalgroups
_version_ 1718939132826222592
spelling ndltd-IBICT-oai-teses.usp.br-tde-19022010-1008202019-01-22T01:37:18Z Comparação de rols classificatórios de tratamentos e de estimativas de componentes de variância em grupos de experimentos Comparison of treatments classicatory rankings and of variance components estimates in experimental groups Cássio Dessotti Sonia Maria de Stefano Piedade Decio Barbin Walter Veriano Valerio Filho Análise de variância Estatística aplicada Melhoramento genético Modelagem de dados Planejamento e análise de experimentos Softwares. Applied statistics Data modeling Genetic improvement Planning and experimental analysis Softwares Variance analysis As análises de grupos de experimentos, de grande importância em melhoramento genético, são indispensáveis quando se pretende investigar o comportamento de alguns tratamentos em diversos locais de interesse do pesquisador. Nestes casos, parte-se das analises de variância individuais em cada local, para o agrupamento de todos os ensaios em uma única analise. Verifica-se então a veracidade da significância da interação tratamentos versus locais - TL, sendo esta não-significativa, pode-se obter conclusões generalizados a respeito do comportamento dos tratamentos. No entanto, o grande interesse esta nos casos de interação significativa, em que dois caminhos de destaque surgem para que se conclua a analise, o primeiro, permite que se considerem os resultados e conclusões das analises individuais, com o resíduo específico de cada local, enquanto o segundo aconselha que se desdobrem os graus de liberdade relativos a tratamentos + interação significativa, visando a interpretação dos tratamentos em estudo dentro de cada um dos locais, utilizando o resíduo médio como testador. Partindo do fato de que componentes de variância são variâncias associadas aos efeitos aleatórios de um modelo matemático, que permitem quantificar a variabilidade de tais efeitos, tem-se por objetivo neste trabalho, em grupos de experimentos reais com interação TL significativa, comparar os componentes de variância obtidos nas analises individuais utilizando os quadrados médios residuais - QMRes de cada ensaio versus os obtidos pós-desdobramento da interação em questão utilizando o quadrado médio do resíduo médio - QMRM. Tal confronto será fundamentado nas estimativas de variâncias das estimativas destes componentes. Finalmente, em grupos de ensaios reais e simulados, o objetivo será voltado para a comparação de rols classificatórios de tratamentos nas analises individuais versus os rols classificatórios de tratamentos obtidos pós-desdobramento da interação em questão. A montagem destes rols será possível a partir do uso do teste de Tukey, ao nível de 5% de significância, para os cálculos das diferenças mínimas significativas - dms ora com resíduos de analises individuais, ora de conjunta. Todos os cálculos deste trabalho serão realizados no software estatístico R. The experimental groups analysis, of great importance in genetic improvement, are essential when intends to investigate the treatments behaviour in many places from researcher interest. In these cases, starts by the individual variance analysis in each place, to the grouping of all experiments in a single analysis. Examine the truth of the signicant treatments vs. places interaction - TL, being this no-signicant, is possible to obtain generalized conclusions about the treatments behaviour. However, the interest is in the cases when signi cant interaction is found, because two eminence ways appear for the analysis conclusions, the rst one allow that the individual analysis results and conclusions be considered, with the specic residue from each place, while the second one advise, that the degrees of freedom relative to treatments + signicant interaction be unfound, looking at the interpretation of the treatments in study inside each place, using the mean residue how testator. Starting with the fact that variance components are variances associated to the aleatory eects of a mathematical model, that allow the quantifying of such eects, this work objective, in real experimental groups, with signicant interaction TL, is to compare the variance components obtained in individual analysis using the residual mean square - QMRes from each experiment against the obtained after unfolding the interaction in question using the mean residual mean square - QMRM. This confrontation will be based in variance estimations of these components estimations. Finally, in real and simulate experimental groups, the objective will be directed to the comparison of treatments classicatory rankings in individual analysis vs. the treatments classi catory rankings obtained after unfolding of the interaction in question. The construction of these rankings will be possible using the Tukey test, with 5% of signicance, for the calculation of the signicants minimum dierences - dms, a time with individual analysis residual, othertime, conjunct. All the calculations from this work will be realized in the R statistical software. 2010-01-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/11/11134/tde-19022010-100820/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Agronomia (Estatística e Experimentação Agronômica) USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP