ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES

É comum, em muitas áreas de investigação científica, a existência de vários modelos de regressão não lineares que podem ser usados para elucidar um mesmo fenômeno. Estando o pesquisador diante de vários modelos alternativos, como escolher qual fornece melhor ajuste? Essa é uma questão de interes...

Full description

Bibliographic Details
Main Author: Josmar Mazucheli
Other Authors: Jorge Alberto Achcar
Language:Portuguese
Published: Universidade de São Paulo 1995
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18042018-103011/
id ndltd-IBICT-oai-teses.usp.br-tde-18042018-103011
record_format oai_dc
spelling ndltd-IBICT-oai-teses.usp.br-tde-18042018-1030112019-01-21T23:43:20Z ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES Not available Josmar Mazucheli Jorge Alberto Achcar Dalton Francisco de Andrade Carlos Alberto Ribeiro Diniz Não disponível Not available É comum, em muitas áreas de investigação científica, a existência de vários modelos de regressão não lineares que podem ser usados para elucidar um mesmo fenômeno. Estando o pesquisador diante de vários modelos alternativos, como escolher qual fornece melhor ajuste? Essa é uma questão de interesse aos estatísticos e muitas estratégias clássicas e Bayesianas de discriminação tem sido propostas na literatura. Nesta dissertação, considerando os modelos não lineares de crescimento sigmóide: Logístico, Gompertz, Tipo-Weibull, Morgan-Mercer-Flodin e Richards, apresentamos uma análise Bayesiana e algumas estratégias (clássicas e Bayesianas) que podem ser usadas em problemas de discriminação de modelos alternativos. Sob o ponto de vista clássico, a discriminação é conduzida com base em conceitos de não linearidade, uma vez que o \"melhor modelo possível\" dentre todos os propostos é aquele que apresenta o comportamento mais próximo do comportamento linear. No contexto Bayesiano, considerando um conjunto de dados, usando uma priori não informativa de Jeffreys, o método de Laplace para aproximar as integrais de interesse e a técnica proposta por Gelfand e Dey (1994) procedemos a discriminação usando as estratégias: Fator de Bayes, critério baseado no conceito de entropia, Pseudo Fator de Bayes e o Fator de Bayes a Posteriori. It is common in many scientific applications, the existence of different non-linear regression models to be used in the same problem. Therefore, usually the researcher has a question: Which model is preferable? This is a question concemed by many statisticians, and many classical or Bayesian strategies for discrimination have been proposed in the literature. In this work, considering the logistic, Gompertz, Weibull-type, Morgan-Mercer- Flodin and Richards growth non-linear models, we present sorne existing strategies to be used in the discrimination of altemative models. Under the classical approach, the discrimination is based on non-linearity concepts, since the best model among many existing altematives is the one that presents behavior close to linear models. Under the Bayesian approach, considering Jeffreys non informative prior densities end Laplace\'s method for approximation of integrals, and a general discrimination procedure, (see Gelfand and Dey, 1994), we explore in an example some different discrimination strategies: Bayes Factor, Entropy, Pseudo Factor of Bayes and Posterior Bayes Factor. 1995-12-20 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18042018-103011/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Ciências da Computação e Matemática Computacional USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP
collection NDLTD
language Portuguese
sources NDLTD
topic Não disponível
Not available
spellingShingle Não disponível
Not available
Josmar Mazucheli
ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
description É comum, em muitas áreas de investigação científica, a existência de vários modelos de regressão não lineares que podem ser usados para elucidar um mesmo fenômeno. Estando o pesquisador diante de vários modelos alternativos, como escolher qual fornece melhor ajuste? Essa é uma questão de interesse aos estatísticos e muitas estratégias clássicas e Bayesianas de discriminação tem sido propostas na literatura. Nesta dissertação, considerando os modelos não lineares de crescimento sigmóide: Logístico, Gompertz, Tipo-Weibull, Morgan-Mercer-Flodin e Richards, apresentamos uma análise Bayesiana e algumas estratégias (clássicas e Bayesianas) que podem ser usadas em problemas de discriminação de modelos alternativos. Sob o ponto de vista clássico, a discriminação é conduzida com base em conceitos de não linearidade, uma vez que o \"melhor modelo possível\" dentre todos os propostos é aquele que apresenta o comportamento mais próximo do comportamento linear. No contexto Bayesiano, considerando um conjunto de dados, usando uma priori não informativa de Jeffreys, o método de Laplace para aproximar as integrais de interesse e a técnica proposta por Gelfand e Dey (1994) procedemos a discriminação usando as estratégias: Fator de Bayes, critério baseado no conceito de entropia, Pseudo Fator de Bayes e o Fator de Bayes a Posteriori. === It is common in many scientific applications, the existence of different non-linear regression models to be used in the same problem. Therefore, usually the researcher has a question: Which model is preferable? This is a question concemed by many statisticians, and many classical or Bayesian strategies for discrimination have been proposed in the literature. In this work, considering the logistic, Gompertz, Weibull-type, Morgan-Mercer- Flodin and Richards growth non-linear models, we present sorne existing strategies to be used in the discrimination of altemative models. Under the classical approach, the discrimination is based on non-linearity concepts, since the best model among many existing altematives is the one that presents behavior close to linear models. Under the Bayesian approach, considering Jeffreys non informative prior densities end Laplace\'s method for approximation of integrals, and a general discrimination procedure, (see Gelfand and Dey, 1994), we explore in an example some different discrimination strategies: Bayes Factor, Entropy, Pseudo Factor of Bayes and Posterior Bayes Factor.
author2 Jorge Alberto Achcar
author_facet Jorge Alberto Achcar
Josmar Mazucheli
author Josmar Mazucheli
author_sort Josmar Mazucheli
title ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
title_short ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
title_full ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
title_fullStr ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
title_full_unstemmed ANÁLISE BAYESIANA E DISCRIMINAÇÃO DE MODELOS NÃO LINEARES
title_sort análise bayesiana e discriminação de modelos não lineares
publisher Universidade de São Paulo
publishDate 1995
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18042018-103011/
work_keys_str_mv AT josmarmazucheli analisebayesianaediscriminacaodemodelosnaolineares
AT josmarmazucheli notavailable
_version_ 1718911152480583680