Linear systems with Markov jumps and multiplicative noises: the constrained total variance problem.

In this work we study the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises. We consider the multiperiod and finite time horizon optimization of a mean-variance cost function under a new criterion. In this new problem, we apply a...

Full description

Bibliographic Details
Main Author: Fabio Barbieri
Other Authors: Oswaldo Luiz do Valle Costa
Language:English
Published: Universidade de São Paulo 2016
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3139/tde-17032017-100317/
Description
Summary:In this work we study the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises. We consider the multiperiod and finite time horizon optimization of a mean-variance cost function under a new criterion. In this new problem, we apply a constraint on the total output variance weighted by its risk parameter while maximizing the expected output. The optimal control law is obtained from a set of interconnected Riccati difference equations, extending previous results in the literature. The application of our results is exemplified by numerical simulations of a portfolio of stocks and a risk-free asset. === Neste trabalho, estudamos o problema do controle ótimo estocástico de sistemas lineares em tempo discreto sujeitos a saltos Markovianos e ruídos multiplicativos. Consideramos a otimização multiperíodo, com horizonte de tempo finito, de um funcional da média-variância sob um novo critério. Neste novo problema, maximizamos o valor esperado da saída do sistema ao mesmo tempo em que limitamos a sua variância total ponderada pelo seu parâmetro de risco. A lei de controle ótima é obtida através de um conjunto de equações de diferenças de Riccati interconectadas, estendendo resultados anteriores da literatura. São apresentadas simulações numéricas para uma carteira de investimentos com ações e um ativo de risco para exemplificarmos a aplicação de nossos resultados.