Summary: | Neste trabalho, a técnica de enriquecimento da partição da unidade é estendida e adaptada para duas formulações não-convencionais para a elasticidade plana: a formulação híbrida de tensão (FHT) e a formulação híbrido-mista de tensão (FHMT). Estas formulações são ditas não-convencionais, pois não recorrem a princípios variacionais clássicos. Elementos finitos triangulares e quadrilaterais com enriquecimento nodal são desenvolvidos para avaliação da forma discreta das duas formulações estudadas. Na FHMT, três campos são aproximados de forma independente: tensões e deslocamentos no domínio e deslocamentos no contorno. O conceito de partição da unidade é então utilizado para garantir continuidade de cada um dos campos envolvidos na FHMT e realizar o procedimento de enriquecimento nodal. Funções polinomiais são utilizadas para enriquecer cada uma das aproximações dos campos da FHMT. A sensibilidade das respostas em relação a redes distorcidas é avaliada. Além disso, abordam-se aspectos relativos à convergência e estabilidade da solução numérica. Especificamente para a FHT, dois campos são independentemente aproximados: tensões no domínio e deslocamentos na fronteira estática. As aproximações das tensões, que por definição não estão atreladas a nós, devem primeiramente satisfazer a condição de equilíbrio no domínio. O conceito de partição da unidade é empregado, neste caso, para dar continuidade aos deslocamentos entre as fronteiras dos elementos. O enriquecimento polinomial da partição de unidade é então aplicado às aproximações dos deslocamentos no contorno. Para o campo de tensões no domínio, desenvolve-se uma técnica específica de enriquecimento nodal. Mais uma vez, aspectos relativos à sensibilidade à distorção de redes e convergência são estudados e avaliados. Finalmente, alguns exemplos numéricos são apresentados para ilustrar o desempenho de ambas as abordagens, especialmente quando a técnica de enriquecimento é aplicada.
===
In the present work, the partition of unity enrichment concept is basically applied to non-conventional stress hybrid-mixed and hybrid formulations in plane elasticity. These formulations are referred to as non-conventional because no variational principles are explored. From these, triangular and quadrilateral finite elements with selective nodal enrichment are then derived. In the stress hybrid-mixed approach, three independent fields are approximated: stress and displacement fields in the domain and displacement fields on the static boundary. The partition of unity concept is then used to provide continuity to all the fields involved. Afterwards, the nodal enrichment feature is explored. Polynomial functions are employed to enrich each one of the approximation fields. Besides, some aspects concerning convergence and stability of the numerical solutions obtained are addressed. On the other hand, in the hybrid approach, two independent fields are approximated: stress fields in the domain and displacement fields on the static boundary. However, the approximation of the stress field must first satisfy the equilibrium condition in the domain without involving nodal values in its definition. Hence, the partition of unity concept is used to provide continuity of displacements between the boundaries of the elements. The partition of unity based nodal enrichment is then applied to the boundary displacement fields. Nevertheless, enrichment of the stress field can also be carried out with exploring a specific and original technique that permits applied the partition of unity concept but in such way as to preserve satisfaction of the equilibrium condition in the domain. Again, convergence and stability aspects of the hybrid approach are briefly addressed. Finally, some numerical examples are presented to illustrate the performance of both approaches derived, especially when combined possibilities of enrichment are explored.
|