Um Estudo Empírico de Hiper-Heurísticas
Uma hiper-heurística é uma heurística que pode ser utilizada para lidar com qualquer problema de otimização, desde que a ela sejam fornecidos alguns parâmetros, como estruturas e abstrações, relacionados ao problema considerado. As hiper-heurísticas têm sido aplicadas a alguns problemas práticos...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2007
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15012008-001809/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-15012008-001809 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
escalonamento
experimentos heurísticas hiper-heurísticas meta-heurísticas otimização roteamento de veículos experiments heuristics hyperheuristics metaheuristics optimization scheduling vehicle routing |
spellingShingle |
escalonamento
experimentos heurísticas hiper-heurísticas meta-heurísticas otimização roteamento de veículos experiments heuristics hyperheuristics metaheuristics optimization scheduling vehicle routing Igor Ribeiro Sucupira Um Estudo Empírico de Hiper-Heurísticas |
description |
Uma hiper-heurística é uma heurística que pode ser utilizada para lidar com qualquer problema de otimização, desde que a ela sejam fornecidos alguns parâmetros, como estruturas e abstrações, relacionados ao problema considerado. As hiper-heurísticas têm sido aplicadas a alguns problemas práticos e apresentadas como métodos de grande potencial, no que diz respeito à capacidade de possibilitar o desenvolvimento, em tempo bastante reduzido, de algoritmos capazes de lidar satisfatoriamente, do ponto de vista prático, com problemas de otimização complexos e pouco conhecidos. No entanto, é difícil situar as hiper-heurísticas em algum nível de qualidade e avaliar a robustez dessas abordagens caso não as apliquemos a problemas para os quais existam diversas instâncias disponíveis publicamente e já experimentadas por algoritmos relevantes. Este trabalho procura dar alguns passos importantes rumo a essas avaliações, além de ampliar o conjunto das hiper-heurísticas, compreender o impacto de algumas alternativas naturais de desenvolvimento e estabelecer comparações entre os resultados obtidos por diferentes métodos, o que ainda nos permite confrontar as duas diferentes classes de hiper-heurísticas que identificamos. Com essas finalidades em mente, desenvolvemos 3 novas hiper-heurísticas e implementamos 2 das hiper-heurísticas mais importantes criadas por outros autores. Para estas últimas, experimentamos ainda algumas extensões e modificações. Os dois métodos hiper-heurísticos selecionados podem ser vistos como respectivos representantes de duas classes distintas, que aparentemente englobam todas as hiper-heurísticas já desenvolvidas e nos permitem denominar cada um desses métodos como \"hiper-heurística de busca direta por entornos\" ou como \"hiper-heurística evolutiva indireta\". Implementamos cada hiper-heurística como uma biblioteca (em linguagem C), de forma a evidenciar e estimular a independência entre o nível em que se encontra a hiper-heurística e aquele onde se apresentam as estruturas e abstrações diretamente relacionadas ao problema considerado. Naturalmente, essa separação é de ingente importância para possibilitar a reutilização imediata das hiper-heurísticas e garantir que nelas haja total ausência de informações relativas a um problema de otimização específico.
===
A hyperheuristic is a heuristic that can be used to handle any optimization problem, provided that the algorithm is fed with some parameters, as structures and abstractions, related to the problem at hand. Hyperheuristics have been applied to some practical problems and presented as methods with great potential to allow the quick development of algorithms that are able to successfully deal, from a practical standpoint, with complex ill-known optimization problems. However, it\'s difficult to position hyperheuristics at some quality level and evaluate their robustness without applying them to problems for which there are many instances available in the public domain and already attacked by worthy algorithms. This work aims to give some important steps towards that process of evaluation, additionally increasing the number of available hyperheuristics, studying the impact of some natural development alternatives and comparing the results obtained by different methods, what also enables us to confront the two classes of hyperheuristics that we have identified. With those purposes in mind, we have developed 3 original hyperheuristics and implemented 2 of the most important hyperheuristics created by other authors. For those latter two approaches, we have also experimented with some modifications and extensions. The two methods we have chosen for implementation may be seen as respectively representing two distinct classes, which seem to contain all hyperheuristics developed so far and that allow us to classify any of these methods as either being a \"direct neighbourhood search hyperheuristic\" or an \"indirect evolutive hyperheuristic\". We have implemented each hyperheuristic as a library (in the C language), so as to clearly show and estimulate the independence between the level where the hyperheuristic is and that to which the structures and abstractions directly related to the problem at hand belong. Obviously, this separation of concerns is extremely important to make the immediate reuse of hyperheuristics possible and enforce in them the complete absence of information from a specific optimization problem.
|
author2 |
Flavio Soares Correa da Silva |
author_facet |
Flavio Soares Correa da Silva Igor Ribeiro Sucupira |
author |
Igor Ribeiro Sucupira |
author_sort |
Igor Ribeiro Sucupira |
title |
Um Estudo Empírico de Hiper-Heurísticas
|
title_short |
Um Estudo Empírico de Hiper-Heurísticas
|
title_full |
Um Estudo Empírico de Hiper-Heurísticas
|
title_fullStr |
Um Estudo Empírico de Hiper-Heurísticas
|
title_full_unstemmed |
Um Estudo Empírico de Hiper-Heurísticas
|
title_sort |
um estudo empírico de hiper-heurísticas |
publisher |
Universidade de São Paulo |
publishDate |
2007 |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15012008-001809/ |
work_keys_str_mv |
AT igorribeirosucupira umestudoempiricodehiperheuristicas AT igorribeirosucupira anempiricalstudyofhyperheuristics |
_version_ |
1718890319087403008 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-15012008-0018092019-01-21T22:04:18Z Um Estudo Empírico de Hiper-Heurísticas An Empirical Study of Hyperheuristics Igor Ribeiro Sucupira Flavio Soares Correa da Silva Marco Tulio Carvalho de Andrade Jose Augusto Ramos Soares escalonamento experimentos heurísticas hiper-heurísticas meta-heurísticas otimização roteamento de veículos experiments heuristics hyperheuristics metaheuristics optimization scheduling vehicle routing Uma hiper-heurística é uma heurística que pode ser utilizada para lidar com qualquer problema de otimização, desde que a ela sejam fornecidos alguns parâmetros, como estruturas e abstrações, relacionados ao problema considerado. As hiper-heurísticas têm sido aplicadas a alguns problemas práticos e apresentadas como métodos de grande potencial, no que diz respeito à capacidade de possibilitar o desenvolvimento, em tempo bastante reduzido, de algoritmos capazes de lidar satisfatoriamente, do ponto de vista prático, com problemas de otimização complexos e pouco conhecidos. No entanto, é difícil situar as hiper-heurísticas em algum nível de qualidade e avaliar a robustez dessas abordagens caso não as apliquemos a problemas para os quais existam diversas instâncias disponíveis publicamente e já experimentadas por algoritmos relevantes. Este trabalho procura dar alguns passos importantes rumo a essas avaliações, além de ampliar o conjunto das hiper-heurísticas, compreender o impacto de algumas alternativas naturais de desenvolvimento e estabelecer comparações entre os resultados obtidos por diferentes métodos, o que ainda nos permite confrontar as duas diferentes classes de hiper-heurísticas que identificamos. Com essas finalidades em mente, desenvolvemos 3 novas hiper-heurísticas e implementamos 2 das hiper-heurísticas mais importantes criadas por outros autores. Para estas últimas, experimentamos ainda algumas extensões e modificações. Os dois métodos hiper-heurísticos selecionados podem ser vistos como respectivos representantes de duas classes distintas, que aparentemente englobam todas as hiper-heurísticas já desenvolvidas e nos permitem denominar cada um desses métodos como \"hiper-heurística de busca direta por entornos\" ou como \"hiper-heurística evolutiva indireta\". Implementamos cada hiper-heurística como uma biblioteca (em linguagem C), de forma a evidenciar e estimular a independência entre o nível em que se encontra a hiper-heurística e aquele onde se apresentam as estruturas e abstrações diretamente relacionadas ao problema considerado. Naturalmente, essa separação é de ingente importância para possibilitar a reutilização imediata das hiper-heurísticas e garantir que nelas haja total ausência de informações relativas a um problema de otimização específico. A hyperheuristic is a heuristic that can be used to handle any optimization problem, provided that the algorithm is fed with some parameters, as structures and abstractions, related to the problem at hand. Hyperheuristics have been applied to some practical problems and presented as methods with great potential to allow the quick development of algorithms that are able to successfully deal, from a practical standpoint, with complex ill-known optimization problems. However, it\'s difficult to position hyperheuristics at some quality level and evaluate their robustness without applying them to problems for which there are many instances available in the public domain and already attacked by worthy algorithms. This work aims to give some important steps towards that process of evaluation, additionally increasing the number of available hyperheuristics, studying the impact of some natural development alternatives and comparing the results obtained by different methods, what also enables us to confront the two classes of hyperheuristics that we have identified. With those purposes in mind, we have developed 3 original hyperheuristics and implemented 2 of the most important hyperheuristics created by other authors. For those latter two approaches, we have also experimented with some modifications and extensions. The two methods we have chosen for implementation may be seen as respectively representing two distinct classes, which seem to contain all hyperheuristics developed so far and that allow us to classify any of these methods as either being a \"direct neighbourhood search hyperheuristic\" or an \"indirect evolutive hyperheuristic\". We have implemented each hyperheuristic as a library (in the C language), so as to clearly show and estimulate the independence between the level where the hyperheuristic is and that to which the structures and abstractions directly related to the problem at hand belong. Obviously, this separation of concerns is extremely important to make the immediate reuse of hyperheuristics possible and enforce in them the complete absence of information from a specific optimization problem. 2007-07-03 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/45/45134/tde-15012008-001809/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Ciência da Computação USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |