Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
Recentemente surgiram dispositivos sensores de profundidade capazes de capturar textura e geometria de uma cena em tempo real. Com isso, diversas técnicas de Visão Computacional, que antes eram aplicadas apenas a texturas, agora são passíveis de uma reformulação, visando o uso também da geometri...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2012
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13022014-152114/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-13022014-152114 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
casamento entre grafos
estimação de movimento imagens RGBD segmentação de movimento graph matching motion estimation motion segmentation RGBD images |
spellingShingle |
casamento entre grafos
estimação de movimento imagens RGBD segmentação de movimento graph matching motion estimation motion segmentation RGBD images David da Silva Pires Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos |
description |
Recentemente surgiram dispositivos sensores de profundidade capazes de capturar textura e geometria de uma cena em tempo real. Com isso, diversas técnicas de Visão Computacional, que antes eram aplicadas apenas a texturas, agora são passíveis de uma reformulação, visando o uso também da geometria. Ao mesmo tempo em que tais algoritmos, tirando vantagem dessa nova tecnologia, podem ser acelerados ou tornarem-se mais robustos, surgem igualmente diversos novos desafios e problemas interessantes a serem enfrentados. Como exemplo desses dispositivos podemos citar o do Projeto Vídeo 4D, do IMPA, e o Kinect (TM), da Microsoft. Esses equipamentos fornecem imagens que vêm sendo chamadas de RGBD, fazendo referência aos três canais de cores e ao canal adicional de profundidade (com a letra \'D\' vindo do termo depth, profundidade em inglês). A pesquisa descrita nesta tese apresenta uma nova abordagem não-supervisionada para a estimação de movimento a partir de vídeos compostos por imagens RGBD. Esse é um passo intermediário necessário para a identificação de componentes rígidos de um objeto articulado. Nosso método faz uso da técnica de casamento inexato (homomorfismo) entre grafos para encontrar grupos de pixels (blocos) que se movem para um mesmo sentido em quadros consecutivos de um vídeo. Com o intuito de escolher o melhor casamento para cada bloco, é minimizada uma função custo que leva em conta distâncias tanto no espaço de cores RGB quanto no XYZ (espaço tridimensional do mundo). A contribuição metodológica consiste justamente na manipulação dos dados de profundidade fornecidos pelos novos dispositivos de captura, de modo que tais dados passem a integrar o vetor de características que representa cada bloco nos grafos a serem casados. Nosso método não usa quadros de referência para inicialização e é aplicável a qualquer vídeo que contenha movimento paramétrico por partes. Para blocos cujas dimensões causem uma relativa diminuição na resolução das imagens, nossa aplicação roda em tempo real. Para validar a metodologia proposta, são apresentados resultados envolvendo diversas classes de objetos com diferentes tipos de movimento, tais como vídeos de pessoas caminhando, os movimento de um braço e um casal de dançarinos de samba de gafieira. Também são apresentados os avanços obtidos na modelagem de um sistema de vídeo 4D orientado a objetos, o qual norteia o desenvolvimento de diversas aplicações a serem desenvolvidas na continuação deste trabalho.
===
Depth-sensing devices have arised recently, allowing real-time scene texture and depth capture. As a result, many computer vision techniques, primarily applied only to textures, now can be reformulated using additional properties like the geometry. At the same time that these algorithms, making use of this new technology, can be accelerated or be made more robust, new interesting challenges and problems to be confronted are appearing. Examples of such devices include the 4D Video Project, from IMPA, and Kinect (TM) from Microsoft. These devices offer the so called RGBD images, being related to the three color channels and to the additional depth channel. The research described on this thesis presents a new non-supervised approach to estimate motion from videos composed by RGBD images. This is an intermediary and necessary step to identify the rigid components of an articulated object. Our method uses the technique of inexact graph matching (homomorphism) to find groups of pixels (patches) that move to the same direction in subsequent video frames. In order to choose the best matching for each patch, we minimize a cost function that accounts for distances on RGB color and XYZ (tridimensional world coordinates) spaces. The methodological contribution consists on depth data manipulation given by the new capture devices, such that these data become components of the feature vector that represents each patch on graphs to be matched. Our method does not use reference frames in order to be initialized and it can be applied to any video that contains piecewise parametric motion. For patches which allow a relative decrease on images resolution, our application runs in real-time. In order to validate the proposed methodology, we present results involving object classes with different movement kinds, such as videos with walking people, the motions of an arm and a couple of samba dancers. We also present the advances obtained on modeling an object oriented 4D video system, which guide a development of different applications to be developed as future work.
|
author2 |
Roberto Marcondes Cesar Junior |
author_facet |
Roberto Marcondes Cesar Junior David da Silva Pires |
author |
David da Silva Pires |
author_sort |
David da Silva Pires |
title |
Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
|
title_short |
Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
|
title_full |
Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
|
title_fullStr |
Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
|
title_full_unstemmed |
Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos
|
title_sort |
estimação de movimento a partir de imagens rgbd usando homomorfismo entre grafos |
publisher |
Universidade de São Paulo |
publishDate |
2012 |
url |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13022014-152114/ |
work_keys_str_mv |
AT daviddasilvapires estimacaodemovimentoapartirdeimagensrgbdusandohomomorfismoentregrafos AT daviddasilvapires motionestimationfromrgbdimagesusinggraphhomomorphism |
_version_ |
1718890313354838016 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-13022014-1521142019-01-21T22:04:18Z Estimação de movimento a partir de imagens RGBD usando homomorfismo entre grafos Motion estimation from RGBD images using graph homomorphism David da Silva Pires Roberto Marcondes Cesar Junior Luiz Carlos Pacheco Rodrigues Velho Roberto Hirata Junior Marcio Lobo Netto Carlos Hitoshi Morimoto Soraia Raupp Musse casamento entre grafos estimação de movimento imagens RGBD segmentação de movimento graph matching motion estimation motion segmentation RGBD images Recentemente surgiram dispositivos sensores de profundidade capazes de capturar textura e geometria de uma cena em tempo real. Com isso, diversas técnicas de Visão Computacional, que antes eram aplicadas apenas a texturas, agora são passíveis de uma reformulação, visando o uso também da geometria. Ao mesmo tempo em que tais algoritmos, tirando vantagem dessa nova tecnologia, podem ser acelerados ou tornarem-se mais robustos, surgem igualmente diversos novos desafios e problemas interessantes a serem enfrentados. Como exemplo desses dispositivos podemos citar o do Projeto Vídeo 4D, do IMPA, e o Kinect (TM), da Microsoft. Esses equipamentos fornecem imagens que vêm sendo chamadas de RGBD, fazendo referência aos três canais de cores e ao canal adicional de profundidade (com a letra \'D\' vindo do termo depth, profundidade em inglês). A pesquisa descrita nesta tese apresenta uma nova abordagem não-supervisionada para a estimação de movimento a partir de vídeos compostos por imagens RGBD. Esse é um passo intermediário necessário para a identificação de componentes rígidos de um objeto articulado. Nosso método faz uso da técnica de casamento inexato (homomorfismo) entre grafos para encontrar grupos de pixels (blocos) que se movem para um mesmo sentido em quadros consecutivos de um vídeo. Com o intuito de escolher o melhor casamento para cada bloco, é minimizada uma função custo que leva em conta distâncias tanto no espaço de cores RGB quanto no XYZ (espaço tridimensional do mundo). A contribuição metodológica consiste justamente na manipulação dos dados de profundidade fornecidos pelos novos dispositivos de captura, de modo que tais dados passem a integrar o vetor de características que representa cada bloco nos grafos a serem casados. Nosso método não usa quadros de referência para inicialização e é aplicável a qualquer vídeo que contenha movimento paramétrico por partes. Para blocos cujas dimensões causem uma relativa diminuição na resolução das imagens, nossa aplicação roda em tempo real. Para validar a metodologia proposta, são apresentados resultados envolvendo diversas classes de objetos com diferentes tipos de movimento, tais como vídeos de pessoas caminhando, os movimento de um braço e um casal de dançarinos de samba de gafieira. Também são apresentados os avanços obtidos na modelagem de um sistema de vídeo 4D orientado a objetos, o qual norteia o desenvolvimento de diversas aplicações a serem desenvolvidas na continuação deste trabalho. Depth-sensing devices have arised recently, allowing real-time scene texture and depth capture. As a result, many computer vision techniques, primarily applied only to textures, now can be reformulated using additional properties like the geometry. At the same time that these algorithms, making use of this new technology, can be accelerated or be made more robust, new interesting challenges and problems to be confronted are appearing. Examples of such devices include the 4D Video Project, from IMPA, and Kinect (TM) from Microsoft. These devices offer the so called RGBD images, being related to the three color channels and to the additional depth channel. The research described on this thesis presents a new non-supervised approach to estimate motion from videos composed by RGBD images. This is an intermediary and necessary step to identify the rigid components of an articulated object. Our method uses the technique of inexact graph matching (homomorphism) to find groups of pixels (patches) that move to the same direction in subsequent video frames. In order to choose the best matching for each patch, we minimize a cost function that accounts for distances on RGB color and XYZ (tridimensional world coordinates) spaces. The methodological contribution consists on depth data manipulation given by the new capture devices, such that these data become components of the feature vector that represents each patch on graphs to be matched. Our method does not use reference frames in order to be initialized and it can be applied to any video that contains piecewise parametric motion. For patches which allow a relative decrease on images resolution, our application runs in real-time. In order to validate the proposed methodology, we present results involving object classes with different movement kinds, such as videos with walking people, the motions of an arm and a couple of samba dancers. We also present the advances obtained on modeling an object oriented 4D video system, which guide a development of different applications to be developed as future work. 2012-12-14 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/45/45134/tde-13022014-152114/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Ciência da Computação USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |