Segmentação e quantificação de tecidos em imagens coloridas de úlceras de perna.

Neste trabalho foi desenvolvida uma metodologia de avaliação e monitoramento de pacientes com úlceras de perna baseada nas características dos tecidos internos dessas feridas. Os tecidos internos podem ser classificados como granulado, fibrina e necrosado, e a avaliação da área de cada um desses...

Full description

Bibliographic Details
Main Author: Andres Anobile Perez
Other Authors: Adilson Gonzaga
Language:Portuguese
Published: Universidade de São Paulo 2001
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/18/18133/tde-11122001-004011/
Description
Summary:Neste trabalho foi desenvolvida uma metodologia de avaliação e monitoramento de pacientes com úlceras de perna baseada nas características dos tecidos internos dessas feridas. Os tecidos internos podem ser classificados como granulado, fibrina e necrosado, e a avaliação da área de cada um desses tecidos fornece para o clínico dados referentes ao estado da úlcera.A metodologia extrai essas informações a partir de imagens digitalizadas das lesões. Para tanto, a área referente à úlcera é segmentada e em seguida a área interna processada por uma rede neural, que tem o propósito de classificar cada ponto para um dos tecidos analisados. Os algoritmos desenvolvidos operam sobre imagens coloridas, já que cada tecido em uma imagem só pode ser identificado por sua cor. Este trabalho propõe ainda uma metodologia de extração de características das lesões através de uma forma não invasiva utilizando, para tanto, algoritmos de visão computacional. === The aim of this work was the development of a monitoring and evaluation methodology of leg ulcers patients based on the features of the inner tissues of these wounds. The internal tissues can be classified as granulation, slough and necrotic, and the evaluation of the area of each one of these tissues can be used by the specialist to help with the patient''s diagnosis. The methodology extracts these information from the wound digitized images. For this, the wound area is segmented and the inner region or the segmented area is processed by a neural network that classifies each point of the analyzed tissues. The developed algorithms operate on color images since each tissue in an image can only be analyzed by its colors. In this work has also proposed a feature extraction methodology of the wounds through a non-invasive way using computer vision algorithms.