Teoria de forma normal para campos vetoriais reversíveis equivariantes

Neste trabalho, apresentamos um método algébrico para obter formas normais de campos vetoriais reversíveis equivariantes. Adaptamos o método clássico de Belitskii-Elphick, usando ferramentas da teoria invariante para estabelecer fórmulas que consideram as simetrias e antissimetrias como ponto de...

Full description

Bibliographic Details
Main Author: Iris de Oliveira Zeli
Other Authors: Miriam Garcia Manoel
Language:Portuguese
Published: Universidade de São Paulo 2013
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072013-165027/
Description
Summary:Neste trabalho, apresentamos um método algébrico para obter formas normais de campos vetoriais reversíveis equivariantes. Adaptamos o método clássico de Belitskii-Elphick, usando ferramentas da teoria invariante para estabelecer fórmulas que consideram as simetrias e antissimetrias como ponto de partida. Mostramos que este método, mesmo sem simetrias, possui uma estreita relação com o método da transversal completa da teoria de singularidades. Com as ferramentas desenvolvidas nesta tese, a forma normal obtida e uma série formal que não depende do cálculo do kernel do chamado operador homológico. Formas normais para duas classes de campos, ressonantes e não ressonantes, são apresentadas, para diferentes representações do grupo \'Z IND. 2\' x \'Z IND. 2\' cuja linearização tem uma parte nilpotente de dimensão 2 e uma parte semi-simples com autovalores puramente imaginários === We give an algebraic method to obtain normal forms of reversible equivariant vector fields. We adapt the classical method by Belitskii-Elphick using tools from invariant theory to establish formulae that take symmetries into account as a starting point. We show that this method, even without symmetries, has a close relation to complete transversal of singularities theory. Applying the method developed in this thesis, the resulting normal form is a formal series which does not depend of the computation of the kernel of the so called homologic operator. Normal forms of two classes of non-resonant and resonant cases are presented, for dierent representations of the group \'Z INT. 2\' x \'Z INT. 2\' - with linearization having a 2 - dimensional nilpotent part and a semisimple part with purely imaginary eigenvalues