Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t I...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2009
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10052010-085321/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-10052010-085321 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Equações diferenciais funcionais retardadas
Equações diferenciais generalizadas Equações diferenciais impulsivas Método da média Averaging Generalized ordinary differential equations Impulsive differential equations Retardedf functional differential equations |
spellingShingle |
Equações diferenciais funcionais retardadas
Equações diferenciais generalizadas Equações diferenciais impulsivas Método da média Averaging Generalized ordinary differential equations Impulsive differential equations Retardedf functional differential equations Jaqueline Bezerra Godoy Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas |
description |
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande
===
In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval
|
author2 |
Márcia Cristina Anderson Braz Federson |
author_facet |
Márcia Cristina Anderson Braz Federson Jaqueline Bezerra Godoy |
author |
Jaqueline Bezerra Godoy |
author_sort |
Jaqueline Bezerra Godoy |
title |
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
|
title_short |
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
|
title_full |
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
|
title_fullStr |
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
|
title_full_unstemmed |
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
|
title_sort |
método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas |
publisher |
Universidade de São Paulo |
publishDate |
2009 |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10052010-085321/ |
work_keys_str_mv |
AT jaquelinebezerragodoy metododamediaparaequacoesdiferenciaisfuncionaisretardadasimpulsivasviaequacoesdiferenciaisgeneralizadas AT jaquelinebezerragodoy averagingmethodforretardedfunctionaldifferentialequationswithimpulsesbygeneralizedordinarydifferentialequations |
_version_ |
1718903978025025536 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-10052010-0853212019-01-21T23:15:05Z Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations Jaqueline Bezerra Godoy Márcia Cristina Anderson Braz Federson Luciano Barbanti Suzinei Aparecida Siqueira Marconato Equações diferenciais funcionais retardadas Equações diferenciais generalizadas Equações diferenciais impulsivas Método da média Averaging Generalized ordinary differential equations Impulsive differential equations Retardedf functional differential equations Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { \'x PONTO\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFERENTE\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', onde f está definida em um aberto \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\') e assume valores em \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, onde \' G POT -\' ([ - r, 0], \' R POT. n\') denota o espaço das funções de [ - r, 0] em \' R POT. n\' que estão regradas e contínuas à esquerda. Além disso, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... são momentos pré determinados de impulsos tais que \'lim SOBRE k SETA + \' INFINITO\' \'t IND. k = + \' INFINITO\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND > k) - x (\'t IND. k). Os operadores de impulso \' I IND. k\', k = 0, 1, ... são funções contínuas de \'R POT. n\' em \' R POT. n\'. Consideramos, também, que para cada x \'varepsilon\' \' G POT. -\' ([- r, \' INFINITO\'), \'R POT. n\'), t \'SETA\' f (t, \'x IND. t\') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos \' f IND. 0\' ( \'phi\') = \' lim SOBRE T \' SETA\' \' INFINITO\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt e \' I IND. 0(x) = \' lim SOBRE T \'SETA\' \' INFINITO\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < ou = \' t IND. i\' < T onde \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', e consideremos a seguinte equação diferencial funcioonal autônoma \" média\" y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { \'x POINT\' = \'varepsilon\' f (t, \'x IND.t\'), t \' DIFFERENT\' \'t IND. k\', \'DELTA\' x(\'t IND. k\') = \'varepsilon\' \' I IND. k\' (x ( \'t IND.k\')), k = 0, 1, 2, ... \'x IND. t IND.0\' = \' phi\', where f está defined in a open set \' OMEGA\' de R x \' G POT. -\' ([- r, 0], \' R POT. n\'), r >0, and takes values in \'R POT. n\', \' \'varepsilon\' \'G POT. - ([ - r, 0], \'R POT.n\'), r .0, where \' G POT -\' ([ - r, 0], \' R POT. n\') denotes the space of regulated functions from [ - r, 0] to \' R POT. n\' which are left continuous. Furthermore, \' t IND.0 < \' t IND. 1\'< ... \'t IND. k\' < ... are pre-assigned moments of impulse effects such that \'lim ON k ARROW + \' THE INFINITE\' \'t IND. k = + \' THE INFINITE\' e \'DELTA\'x (\' t IND.k\') = x ( \'t POT. + IND>k) - x (\'t IND. k). The impulse operators \' I IND. k\', k = 0, 1, ... are continuous mappings from \'R POT. n\' to \' R POT. n\'. For each x \'varepsilon\' \' G POT. -\' ([- r, \' THE INFINITE\'), \'R POT. n\'), t \'ARROW\' f (t, \'x IND. t\') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define \' f IND. 0\' ( \'phi\') = \' lim ON T \' ARROW\' \' THE INFINITE\' \'1 SUP. T \' INT. SUP. T INF. \' T IND.0\' f (t, \' PSI\') dt and \' I IND. 0(x) = \' lim ON T \'ARROW\' \' THE INFINITE\' \' 1 SUP. T\' \' SIGMA\' IND. 0 < or = \' t IND. i\' < T where \' psi\' \'varepsilon\' \' G POT. -\' ([ - r, 0], \' R POT. n\', and consider the \"averaged\" autonomous functional differential equation \'y PONTO = \' varepsilon\' [ \' f IND. 0\' (\' y IND. t\' + \' I IND> 0\' (y (t))], \'y IND. t IND. 0 = \' phi\'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval 2009-08-24 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10052010-085321/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Matemática USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |