Espectroscopia Raman de altos explosivos

Alguns altos explosivos foram caracterizados por espectroscopia Raman e no Infravermelho, e o efeito da temperatura sobre os espectros Raman foi medido in-situ. Foram estudados os produtos comerciais TNT, HMX, RDX e PETN, os quais, com exceção do HMX e RDX, pertencem a classes químicas distintas...

Full description

Bibliographic Details
Main Author: Marcelo Abreu de Souza
Other Authors: Dalva Lúcia Araújo de Faria
Language:Portuguese
Published: Universidade de São Paulo 2006
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/46/46132/tde-09022007-150540/
Description
Summary:Alguns altos explosivos foram caracterizados por espectroscopia Raman e no Infravermelho, e o efeito da temperatura sobre os espectros Raman foi medido in-situ. Foram estudados os produtos comerciais TNT, HMX, RDX e PETN, os quais, com exceção do HMX e RDX, pertencem a classes químicas distintas e também foi investigado o TATP sintetizado no laboratório. As amostras foram inicialmente caracterizadas por FT-IR, FT-IR/ATR e espectroscopia Raman com excitação no visível (632,8 nm) e no NIR (1064 nm) visando determinar se a técnica de amostragem exercia algum efeito, especificamente transições de fase e degradação, sobre os espectros. ATR e FT-Raman forneceram os espectros a partir dos quais foi feita a atribuição de bandas, a qual foi suportada por simulações teóricas (DFT, B3PW91). Cada amostra foi aquecida até uma temperatura abaixo do ponto de fusão, na qual o comportamento do espectro com o aquecimento era reversível. No caso do PETN e TNT esse valor foi bem próximo do ponto de fusão e no caso do HMX e RDX, foi substancialmente inferior. As bandas mais afetadas pela temperatura devem ser aquelas envolvidas nas rotas de relaxação de energia em explosivos. Os resultados obtidos sugerem que o PETN sofra decomposição térmica através da ruptura da ligação C-ONO2, enquanto que no HMX e RDX a ligação N-N deve ser rompida. As mudanças no espectro do TNT indicam que vibrações envolvendo os grupos NO2 e a ligação C-N são as mais sensíveis à temperatura. TATP sublima à temperatura de 70°C e até essa temperatura o espectro não é afetado pelo calor. Provavelmente a energia é utilizada no processo de sublimação. === Selected high explosives were characterized by Raman and Infrared spectroscopies and the effect of temperature was followed in-situ by Raman spectroscopy. TNT, HMX, RDX, PETN (commercial products) and TATP belong to distinct chemical families (except HMX and RDX) and their response to heating was evaluated. The samples were first characterized by FT-IR, FT-IR/ATR and Raman with excitation in the visible (632.8 nm) and in the NIR (1064 nm) aiming at the detection of sampling effects in the obtained spectra, specifically phase transitions and degradation. ATR and FT-Raman were the techniques of choice to provide the spectra for band assignment, which was assisted by theoretical simulations (DFT). Each sample was heated up to a temperature well below its melting point, in order to avoid thermal decomposition. The bands most affected by temperature were taken as the routes for energy relaxation in explosives. The obtained results lead to the conclusion that PETN decomposes through the rupture of the C-ONO2 bond, whereas in HMX and RDX the N-N bond is broken. TNT spectra indicates that the NO2 and C-N vibrations are the most sensitive to temperature and TATP sublimated at 70°C and no bands were affected by temperature. The results are agreement with the literature or theoretical simulations.