Summary: | Máquinas de Estados Finitos, além de suas inúmeras aplicações, são amplamente utilizadas na Engenharia de Software para modelar especificações de sistemas. Nesses modelos, projetistas podem inserir, inadvertidamente, estados redundantes, ou seja, que exibem o mesmo comportamento. A eliminação desses estados traz diversos benefícios para as atividades que utilizam o modelo, como menor complexidade e menos recursos físicos para implementação. O processo de eliminação desses estados é denominado minimização, e pode ser realizado em tempo polinomial para máquinas completamente especificadas. Por outro lado, a minimização de máquinas parciais, cuja especificação não cobre todo o domínio de entrada, somente pode ser obtida em tempo polinomial com o uso de abordagens não determinísticas, ou seja, trata-se de um problema NP-Completo. Este trabalho apresenta uma estratégia para a minimização de máquinas de estados finitos parciais que faz o uso de heurísticas e otimizações para tornar o processo mais eficiente. Visando mensurar tal ganho de eficiência, foram realizados experimentos, nos quais os tempos de execução de uma implementação do método proposto foram medidos, juntamente com os tempos de implementações de dois outros métodos conhecidos. Os resultados mostraram vantagens significativas de performance para o novo método em relação aos métodos anteriores
===
Finite State Machines are largely used on Software Engineering to model systems specifications. In these models, designers may inadvertently include redundant states, i.e., states which exhibit the same input/output behavior. The absence of such states brings benefits to the modeling activities, reducing the complexity and taking less physical resources on implementations. The process of eliminating redundant states is known as minimization, and can be accomplished in polynomial time for completely specified machines. On the other hand, the minimization of partially specified machines, i.e., machines which have undefined behavior for some inputs, can only be done in polynomial time when non-deterministic approaches are applied. It is a known NP-Complete problem. This work presents a deterministic approach to minimize incompletely specified Finite State Machines, using heuristics and optimizations to accomplish the task more efficiently. In order to measure the performance improvements, experiments were done, observing the running time of an implementation of the proposed method, along with running times of implementations of two other known methods. The results revealed a significant performance advantage when using the proposed approach
|