Modelagem de medidas de controle em redes de movimentação de animais
A movimentação de animais em uma rede de fazendas e o espalhamento de algumas doenças animais estão intrinsecamente relacionados. Assim, compreender a dinâmica do espalhamento de doenças infecciosas nestas redes é um instrumento importante no controle dessas doenças. Usando as informações sobre...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade de São Paulo
2015
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/10/10134/tde-06112015-111048/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-06112015-111048 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Bovinos
Espalhamento de doenças Modelagem epidemiológica Movimentação de animais Redes complexas Animal movements Cattle Complex networks Disease spreading Epidemic modeling |
spellingShingle |
Bovinos
Espalhamento de doenças Modelagem epidemiológica Movimentação de animais Redes complexas Animal movements Cattle Complex networks Disease spreading Epidemic modeling Raul Ossada Modelagem de medidas de controle em redes de movimentação de animais |
description |
A movimentação de animais em uma rede de fazendas e o espalhamento de algumas doenças animais estão intrinsecamente relacionados. Assim, compreender a dinâmica do espalhamento de doenças infecciosas nestas redes é um instrumento importante no controle dessas doenças. Usando as informações sobre as movimentações de bovinos no estado de Mato Grosso, Brasil, em 2007, reconstruiu-se a rede de trânsito e a rede de proximidade geográfica entre os estabelecimentos desse estado, além de redes hipotéticas seguindo os modelos de rede Molloy-Reed, Kalisky, Método A e Método B, onde simulou-se, usando diferentes configurações do modelo SLIRS, o espalhamento de doenças com parâmetros hipotéticos e reais (brucelose e febre aftosa). Além disso, simulou-se o controle do espalhamento dessas doenças considerando o controle por imunização e por restrição, com e sem rearranjo das movimentações após a restrição, selecionando os estabelecimentos a serem protegidos de forma aleatória, baseando-se no grau de movimentação dos animais e utilizando o conceito do paradoxo da amizade. Dentre os resultados, destacam-se que apesar dos padrões das curvas de prevalência nas redes hipotéticas serem semelhantes aos da rede real, os valores observados foram maiores nas redes hipotéticas, indicando que utilizá-las no planejamento de políticas de controle de doenças no lugar da rede real pode levar a um maior uso de recursos do que seria necessário. Além disso, no controle das doenças tanto com parâmetros hipotéticos quanto com parâmetros reais, nas simulações usando apenas a rede de trânsito dos animais, observou-se uma redução mais efetiva da prevalência ao se selecionar os estabelecimentos com maior grau total do que a da seleção aleatória, enquanto que nas simulações que consideraram a rede de proximidade geográfica dos estabelecimentos, a redução na prevalência das estratégias que selecionaram estabelecimentos específicos foram semelhantes aos da seleção aleatória. Sobre o efeito do rearranjo das movimentações, observou-se que este pode facilitar o espalhamento de doenças na rede, mesmo nas situações em que se aplica alguma estratégia de controle. Espera-se que os resultados das simulações matemáticas possam contribuir para a discussão do impacto relativo entre as estratégias de controle mencionadas e que futuramente possam auxiliar nas atividades dos órgãos responsáveis pela vigilância epidemiológica e no desenvolvimento de políticas de prevenção e controle de doenças em animais.
===
The animals’ movements in a farms network and the spread of some animal diseases are intrinsically related. Therefore, comprehending the dynamics of the spreading of infectious diseases in these networks is an important tool in controlling these diseases. Using the information about the bovine movements from the State of Mato Grosso, Brazil, in 2007, we rebuilt the network of animal movements and the geographic proximity network between the premises of this state, in addition to hypothetical networks following the network models Molloy-Reed, Kalisky, Method A and Method B, where we simulated, using different configurations of the model SLIRS, the spread of diseases with hypothetical parameters e real ones (brucellosis and foot and mouth disease). Moreover, we simulated the control of these diseases spreading, considering the control by immunization and by restriction, with and without the rearrangement of the movements after the restriction, selecting the premises to be protected randomly, based on the degree of animal’s movements and using the concept of the friendship paradox. Among the results, stands out that although the pattern of the prevalence curves in the hypothetical networks were similar to the ones in the real network, the observed values were higher in the hypothetical networks, indicating that using them in the planning of policies to control diseases in place of the real network might lead to a greater expense of resources than it would be necessary. Furthermore, in the control of the diseases both with hypothetical parameters as well as with real parameters, in the simulations using only the animal’s movements network, it was observed a more effective reduction of the prevalence when selecting the premises with the highest total degree than the random selection, while in the simulations that considered the network of geographic proximity of the premises, the reduction in the prevalence of the strategies that selected specific premises were similar to the random selection. On the effect of rearranging the movements, it was observed that it may facilitate the spread of diseases in the network even in situations where some control strategy is used. We hope that the results of the mathematical simulations may contribute to the discussion of the relative impact of the mentioned control strategies and that in the future they may assist in the activities of agencies responsible for disease surveillance and in the development of policies to prevent and control diseases in animals.
|
author2 |
Marcos Amaku |
author_facet |
Marcos Amaku Raul Ossada |
author |
Raul Ossada |
author_sort |
Raul Ossada |
title |
Modelagem de medidas de controle em redes de movimentação de animais
|
title_short |
Modelagem de medidas de controle em redes de movimentação de animais
|
title_full |
Modelagem de medidas de controle em redes de movimentação de animais
|
title_fullStr |
Modelagem de medidas de controle em redes de movimentação de animais
|
title_full_unstemmed |
Modelagem de medidas de controle em redes de movimentação de animais
|
title_sort |
modelagem de medidas de controle em redes de movimentação de animais |
publisher |
Universidade de São Paulo |
publishDate |
2015 |
url |
http://www.teses.usp.br/teses/disponiveis/10/10134/tde-06112015-111048/ |
work_keys_str_mv |
AT raulossada modelagemdemedidasdecontroleemredesdemovimentacaodeanimais AT raulossada modelingcontrolmeasuresinnetworksofanimalmovements |
_version_ |
1718906287482208256 |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-06112015-1110482019-01-21T23:24:37Z Modelagem de medidas de controle em redes de movimentação de animais Modeling control measures in networks of animal movements Raul Ossada Marcos Amaku Ricardo Augusto Dias José Henrique de Hildebrand e Grisi Filho Paulo Roberto Guimaraes Junior Rísia Lopes Negreiros Bovinos Espalhamento de doenças Modelagem epidemiológica Movimentação de animais Redes complexas Animal movements Cattle Complex networks Disease spreading Epidemic modeling A movimentação de animais em uma rede de fazendas e o espalhamento de algumas doenças animais estão intrinsecamente relacionados. Assim, compreender a dinâmica do espalhamento de doenças infecciosas nestas redes é um instrumento importante no controle dessas doenças. Usando as informações sobre as movimentações de bovinos no estado de Mato Grosso, Brasil, em 2007, reconstruiu-se a rede de trânsito e a rede de proximidade geográfica entre os estabelecimentos desse estado, além de redes hipotéticas seguindo os modelos de rede Molloy-Reed, Kalisky, Método A e Método B, onde simulou-se, usando diferentes configurações do modelo SLIRS, o espalhamento de doenças com parâmetros hipotéticos e reais (brucelose e febre aftosa). Além disso, simulou-se o controle do espalhamento dessas doenças considerando o controle por imunização e por restrição, com e sem rearranjo das movimentações após a restrição, selecionando os estabelecimentos a serem protegidos de forma aleatória, baseando-se no grau de movimentação dos animais e utilizando o conceito do paradoxo da amizade. Dentre os resultados, destacam-se que apesar dos padrões das curvas de prevalência nas redes hipotéticas serem semelhantes aos da rede real, os valores observados foram maiores nas redes hipotéticas, indicando que utilizá-las no planejamento de políticas de controle de doenças no lugar da rede real pode levar a um maior uso de recursos do que seria necessário. Além disso, no controle das doenças tanto com parâmetros hipotéticos quanto com parâmetros reais, nas simulações usando apenas a rede de trânsito dos animais, observou-se uma redução mais efetiva da prevalência ao se selecionar os estabelecimentos com maior grau total do que a da seleção aleatória, enquanto que nas simulações que consideraram a rede de proximidade geográfica dos estabelecimentos, a redução na prevalência das estratégias que selecionaram estabelecimentos específicos foram semelhantes aos da seleção aleatória. Sobre o efeito do rearranjo das movimentações, observou-se que este pode facilitar o espalhamento de doenças na rede, mesmo nas situações em que se aplica alguma estratégia de controle. Espera-se que os resultados das simulações matemáticas possam contribuir para a discussão do impacto relativo entre as estratégias de controle mencionadas e que futuramente possam auxiliar nas atividades dos órgãos responsáveis pela vigilância epidemiológica e no desenvolvimento de políticas de prevenção e controle de doenças em animais. The animals’ movements in a farms network and the spread of some animal diseases are intrinsically related. Therefore, comprehending the dynamics of the spreading of infectious diseases in these networks is an important tool in controlling these diseases. Using the information about the bovine movements from the State of Mato Grosso, Brazil, in 2007, we rebuilt the network of animal movements and the geographic proximity network between the premises of this state, in addition to hypothetical networks following the network models Molloy-Reed, Kalisky, Method A and Method B, where we simulated, using different configurations of the model SLIRS, the spread of diseases with hypothetical parameters e real ones (brucellosis and foot and mouth disease). Moreover, we simulated the control of these diseases spreading, considering the control by immunization and by restriction, with and without the rearrangement of the movements after the restriction, selecting the premises to be protected randomly, based on the degree of animal’s movements and using the concept of the friendship paradox. Among the results, stands out that although the pattern of the prevalence curves in the hypothetical networks were similar to the ones in the real network, the observed values were higher in the hypothetical networks, indicating that using them in the planning of policies to control diseases in place of the real network might lead to a greater expense of resources than it would be necessary. Furthermore, in the control of the diseases both with hypothetical parameters as well as with real parameters, in the simulations using only the animal’s movements network, it was observed a more effective reduction of the prevalence when selecting the premises with the highest total degree than the random selection, while in the simulations that considered the network of geographic proximity of the premises, the reduction in the prevalence of the strategies that selected specific premises were similar to the random selection. On the effect of rearranging the movements, it was observed that it may facilitate the spread of diseases in the network even in situations where some control strategy is used. We hope that the results of the mathematical simulations may contribute to the discussion of the relative impact of the mentioned control strategies and that in the future they may assist in the activities of agencies responsible for disease surveillance and in the development of policies to prevent and control diseases in animals. 2015-08-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/10/10134/tde-06112015-111048/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Epidemiologia Experimental e Aplicada às Zoonoses USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |