Vida residual em pacientes com insuficiência cardíaca: uma abordagem semiparamétrica

Usualmente a análise de sobrevivência considera a modelagem da função da taxa de falha ou função de risco. Uma alternativa a essa visão é estudar a vida residual, que em alguns casos é mais intuitiva do que a função de risco. A vida residual é o tempo de sobrevida adicional de um indivíduo que s...

Full description

Bibliographic Details
Main Author: Victor Gonçalves Duarte
Other Authors: Antonio Carlos Pedroso de Lima
Language:Portuguese
Published: Universidade de São Paulo 2017
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45133/tde-06082017-161739/
Description
Summary:Usualmente a análise de sobrevivência considera a modelagem da função da taxa de falha ou função de risco. Uma alternativa a essa visão é estudar a vida residual, que em alguns casos é mais intuitiva do que a função de risco. A vida residual é o tempo de sobrevida adicional de um indivíduo que sobreviveu até um dado instante t0. Este trabalho descreve técnicas semiparamétricas e não paramétricas para estimar a média e a mediana de vida residual em uma população, testes para igualdade dessas medidas em duas populações e também modelos de regressão. Tais técnicas já foram testadas anteriormente em dados com baixa presença de censura; aqui elas são aplicadas a um conjunto de dados de pacientes com insuficiência cardíaca que possui uma alta quantidade de observações censuradas. === Usually, survival analysis is based on the modeling of the hazard function. One alternative approach is to consider the residual life, which would be more intuitive than the hazard function. Residual lifetime is the remaining survival time of a person given he or she survived a given time point t0. We describe semiparametric and non-parametric techniques for mean and median residual life estimation in a one-sample population, as well as tests for two-sample cases and regression models. Such techniques were previously tested for moderate censored data; here we apply them to heart-failure patients data with a high rate of censoring.