Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.

Segmentação de uma imagem é um processo de extrema importância em processamento de imagens e consiste em subdividir a imagem em partes constituintes correspondentes a objetos de interesse no domínio de aplicação. Objetos de interesse podem apresentar cores que se caracterizam numa imagem por um...

Full description

Bibliographic Details
Main Author: Waldemar Bonventi Junior
Other Authors: Anna Helena Reali Costa
Language:Portuguese
Published: Universidade de São Paulo 2005
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03102005-095502/
id ndltd-IBICT-oai-teses.usp.br-tde-03102005-095502
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic aprendizado computacional
fuzzy (inteligência artificial)
processamento de imagens
fuzzy sets
image processing
machine learning
spellingShingle aprendizado computacional
fuzzy (inteligência artificial)
processamento de imagens
fuzzy sets
image processing
machine learning
Waldemar Bonventi Junior
Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
description Segmentação de uma imagem é um processo de extrema importância em processamento de imagens e consiste em subdividir a imagem em partes constituintes correspondentes a objetos de interesse no domínio de aplicação. Objetos de interesse podem apresentar cores que se caracterizam numa imagem por um conjunto de pixels, que por sua vez possuem um número muito grande de valores cromáticos. Estes conjuntos podem ser denominados por relativamente poucos rótulos lingüísticos atribuídos por seres humanos, caracterizando as cores, representadas por classes. Entretanto, a fronteira entre estas classes é vaga, pois os valores cromáticos que definem a transição de uma cor para outra dependem de diversos fatores do domínio. Esta tese visa contribuir no processo de segmentação de imagens através da proposta de um classificador de pixels exclusivamente por meio do atributo cor. Para lidar com o problema da vagueza entre as classes de cores, emprega-se a teoria dos conjuntos nebulosos. Assim, propõe-se um aprendizado híbrido e incremental de modelos nebulosos de classes de cores constituintes do classificador. O aprendizado híbrido combina os paradigmas de aprendizado supervisionado e não-supervisionado, transferindo a rotulação individual das instâncias (muito custosa) para a rotulação dos grupos de instâncias similares, pelo agente supervisor. Estes grupos são combinados por meio da aplicação de operadores de agregação adequados, que possibilitam uma forma de aprendizado incremental, onde os modelos das classes existentes podem ser revisados ou novas classes, obtidas com a continuidade do treinamento, podem ser incorporadas aos modelos. Propõe-se, ainda, um processo de generalização do modelo, visando sua completude. O classificador proposto foi testado na modelagem da cor da pele humana em imagens adquiridas em condições ambientais controladas e em condições variadas. Os resultados obtidos mostram a eficácia do classificador proposto, obtendo uma detecção robusta e acurada da cor da pele em imagens digitais coloridas. === Image segmentation is a very important process, which aims at subdividing an image in parts that correspond to objects of interest in the application domain. Objects may depict few colors that are represented in an image by a set of pixels presenting a very large range of chromatic values. A relatively small number of human-defined linguistic labels can be assigned to these sets, and these labels characterize colors represented by classes. However, the borders among these classes are fuzzy, since the chromatic values that define the transition from a class to another depend on different domain factors. This thesis contributes in the image segmentation process by proposing a pixel classifier based exclusively on the color attribute. Fuzzy sets theory is used to deal with the problem of fuzziness among color classes. This thesis proposes a hybrid and incremental scheme for learning fuzzy models of color classes included in the classifier. The hybrid-learning scheme combines unsupervised and supervised learning paradigms, transferring the labeling by a supervisor from individual instances (a very computationally costly task) to groups of similar instances. These groups are combined by application of adequate aggregation operators, providing an incremental learning scheme to the classifier, so that models can be revised and new classes can be incorporated into the models. In order to provide completeness to the models, a generalization process is also proposed. The classifier was tested in the human skin color-modeling problem, by using digital color-images captured under controlled and uncontrolled conditions. Experimental results assess its effectiveness, providing a robust and accurate detection of skin color in digital color-images.
author2 Anna Helena Reali Costa
author_facet Anna Helena Reali Costa
Waldemar Bonventi Junior
author Waldemar Bonventi Junior
author_sort Waldemar Bonventi Junior
title Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
title_short Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
title_full Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
title_fullStr Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
title_full_unstemmed Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
title_sort aprendizado nebuloso híbrido e incremental para classificar pixels por cores.
publisher Universidade de São Paulo
publishDate 2005
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03102005-095502/
work_keys_str_mv AT waldemarbonventijunior aprendizadonebulosohibridoeincrementalparaclassificarpixelsporcores
AT waldemarbonventijunior hybridandincrementalfuzzylearningtoclassifypixelsbycolors
_version_ 1718648093139795968
spelling ndltd-IBICT-oai-teses.usp.br-tde-03102005-0955022018-05-23T19:50:59Z Aprendizado nebuloso híbrido e incremental para classificar pixels por cores. Hybrid and incremental fuzzy learning to classify pixels by colors. Waldemar Bonventi Junior Anna Helena Reali Costa Marco Tulio Carvalho de Andrade Hae Yong Kim Mauricio Marengoni Marley Maria Bernardes Rebuzzi Vellasco aprendizado computacional fuzzy (inteligência artificial) processamento de imagens fuzzy sets image processing machine learning Segmentação de uma imagem é um processo de extrema importância em processamento de imagens e consiste em subdividir a imagem em partes constituintes correspondentes a objetos de interesse no domínio de aplicação. Objetos de interesse podem apresentar cores que se caracterizam numa imagem por um conjunto de pixels, que por sua vez possuem um número muito grande de valores cromáticos. Estes conjuntos podem ser denominados por relativamente poucos rótulos lingüísticos atribuídos por seres humanos, caracterizando as cores, representadas por classes. Entretanto, a fronteira entre estas classes é vaga, pois os valores cromáticos que definem a transição de uma cor para outra dependem de diversos fatores do domínio. Esta tese visa contribuir no processo de segmentação de imagens através da proposta de um classificador de pixels exclusivamente por meio do atributo cor. Para lidar com o problema da vagueza entre as classes de cores, emprega-se a teoria dos conjuntos nebulosos. Assim, propõe-se um aprendizado híbrido e incremental de modelos nebulosos de classes de cores constituintes do classificador. O aprendizado híbrido combina os paradigmas de aprendizado supervisionado e não-supervisionado, transferindo a rotulação individual das instâncias (muito custosa) para a rotulação dos grupos de instâncias similares, pelo agente supervisor. Estes grupos são combinados por meio da aplicação de operadores de agregação adequados, que possibilitam uma forma de aprendizado incremental, onde os modelos das classes existentes podem ser revisados ou novas classes, obtidas com a continuidade do treinamento, podem ser incorporadas aos modelos. Propõe-se, ainda, um processo de generalização do modelo, visando sua completude. O classificador proposto foi testado na modelagem da cor da pele humana em imagens adquiridas em condições ambientais controladas e em condições variadas. Os resultados obtidos mostram a eficácia do classificador proposto, obtendo uma detecção robusta e acurada da cor da pele em imagens digitais coloridas. Image segmentation is a very important process, which aims at subdividing an image in parts that correspond to objects of interest in the application domain. Objects may depict few colors that are represented in an image by a set of pixels presenting a very large range of chromatic values. A relatively small number of human-defined linguistic labels can be assigned to these sets, and these labels characterize colors represented by classes. However, the borders among these classes are fuzzy, since the chromatic values that define the transition from a class to another depend on different domain factors. This thesis contributes in the image segmentation process by proposing a pixel classifier based exclusively on the color attribute. Fuzzy sets theory is used to deal with the problem of fuzziness among color classes. This thesis proposes a hybrid and incremental scheme for learning fuzzy models of color classes included in the classifier. The hybrid-learning scheme combines unsupervised and supervised learning paradigms, transferring the labeling by a supervisor from individual instances (a very computationally costly task) to groups of similar instances. These groups are combined by application of adequate aggregation operators, providing an incremental learning scheme to the classifier, so that models can be revised and new classes can be incorporated into the models. In order to provide completeness to the models, a generalization process is also proposed. The classifier was tested in the human skin color-modeling problem, by using digital color-images captured under controlled and uncontrolled conditions. Experimental results assess its effectiveness, providing a robust and accurate detection of skin color in digital color-images. 2005-06-30 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03102005-095502/ por info:eu-repo/semantics/openAccess Universidade de São Paulo Engenharia Elétrica USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP